好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2022年安徽凤阳县城西中学数学高一下期末教学质量检测试题含解析.doc

17页
  • 卖家[上传人]:茅****
  • 文档编号:291058177
  • 上传时间:2022-05-11
  • 文档格式:DOC
  • 文档大小:1.46MB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2021-2022学年高一下数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为( )A. B. C. D.2.电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性( )A.都相等,且为 B.都相等,且为C.均不相等 D.不全相等3.已知变量,满足约束条件则的最大值为( )A.2 B.3 C.4 D.64.某校有高一学生450人,高二学生480人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为n的样本,已知从高一学生中抽取15人,则n为( )A.15 B.16 C.30 D.315.已知函数,,的零点分别为a,b,c,则( )A. B. C. D.6.若直线被圆截得弦长为4,则的最小值是( )A.9 B.4 C. D.7.式子的值为(  )A. B.0 C.1 D.8.设的内角所对的边分别为,且,已知的面积等于,,则的值为( )A. B. C. D.9.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.10.在中,内角,,的对边分别为,,,且,,为的面积,则的最大值为( )A.1 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。

      11.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.12.已知函数的最小正周期为,且的图象过点,则方程所有解的和为________.13.已知向量,且,则的值为______14.在空间直角坐标系中,点关于原点的对称点的坐标为__________.15.设是等差数列的前项和,若,则___________.16.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点. 求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.18.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.19.已知等差数列满足,,其前项和为.(1)求的通项公式及;(2)令,求数列的前项和,并求的值.20.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.21.如图四边形ABCD为菱形,G为AC与BD交点,,(I)证明:平面平面;(II)若, 三棱锥的体积为,求该三棱锥的侧面积.参考答案一、选择题:本大题共10小题,每小题5分,共50分。

      在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.2、A【解析】根据随机抽样等可能抽取的性质即可求解.【详解】由随机抽样等可能抽取,可知每个个体被抽取的可能性相等,故抽取的概率为.故选:A【点睛】本题考查了随机抽样的特点,属于基础题.3、D【解析】试题分析:把函数转化为表示斜率为截距为平行直线系,当截距最大时,最大,由题意知当直线过和两条直线交点时考点:线性规划的应用.【详解】请在此输入详解!4、D【解析】根据分层抽样的定义和性质进行求解即可.【详解】根据分层抽样原理,列方程如下,,解得n=1.故选:D.【点睛】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.5、B【解析】,,分别为,,的根,作出,,的图象与直线,观察交点的横坐标的大小关系.【详解】由题意可得,,分别为,,的根,作出,,,的图象, 与直线的交点的横坐标分别为,,,由图象可得,故选:.【点睛】本题主要考查了函数的零点,函数的图象,数形结合思想,属于中档题.6、A【解析】圆方程配方后求出圆心坐标和半径,知圆心在已知直线上,代入圆心坐标得满足的关系,用“1”的代换结合基本不等式求得的最小值.【详解】圆标准方程为,圆心为,半径为,直线被圆截得弦长为4,则圆心在直线上,∴,,又,∴,当且仅当,即时等号成立.∴的最小值是1.故选:A.【点睛】本题考查用基本不等式求最值,解题时需根据直线与圆的位置关系求得的关系,然后用“1”的代换法把凑配出可用基本不等式的形式,从而可求得最值.7、B【解析】根据两角和的余弦公式,得到原式,即可求解,得到答案.【详解】由两角和的余弦公式,可得,故选B.【点睛】本题主要考查了两角和的余弦公式的化简求值,其中解答中熟记两角和的余弦公式是解答的关键,着重考查了运算与求解能力,属于基础题.8、D【解析】由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.9、A【解析】直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行 直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.10、C【解析】先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【详解】因为,所以可化为,即,可得,所以.又由正弦定理得,,所以,当且仅当时,取得最大值.故选C【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。

      11、【解析】 , 即 为首项为 ,公差为 的等差数列, , , ,由 得 ,因为 或 时, 有最大值 , ,即 的最小值为,故答案为 .【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.12、【解析】由周期求出,由图象的所过点的坐标求得,【详解】由题意,又,且,∴,,由得或,又,,∴或,或,两根之和为.故答案为:.【点睛】本题考查求三角函数的解析式,考查解三角方程.掌握正切函数的性质是解题关键.13、-7【解析】,利用列方程求解即可.【详解】,且,,解得:.【点睛】考查向量加法、数量积的坐标运算.14、【解析】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【点睛】本题考查了空间直角坐标系关于原点对称,属于简单题.15、1.【解析】由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.16、②④【解析】利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【点睛】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.三、解答题:本大题共5小题,共70分。

      解答时应写出文字说明、证明过程或演算步骤17、(1)详证见解析;(2)详证见解析.【解析】( 1)可通过连接交于,通过中位线证明和平行得证平面.( 2)可通过正方形得证,通过平面得证,然后通过线面垂直得证面面垂直.【详解】( 1)证明: 连交于O, 因为四边形是正方形 ,所以 ,连,则是三角形的中位线, ,平面,平面 所以平面 . (2)因为平面 ,所以 , 因为是正方形,所以, 所以平面, 所以平面平面.【点睛】证明线面平行可通过线线平行得证,证明面面垂直可通过线面垂直得证.18、(1);(2)证明见解析,;(3)或.【解析】(1)运用数列的递推式以及数列的和与通项的关系可得,再由等比数列的定义、通项公式可得结果;(2)对等式两边除以,结合等差数列的定义和通项公式,可得所求;(3)求得,由数列的错位相减法求和,可得,化简,即,对任意的成立,运用数列的单调性可得最大值,解不等式可得所求范围.【详解】(1),可得,即;时,,又,相减可得,即,则;(2)证明:,可得,可得是首项和公差均为1的等差数列,可得,即;(3) ,前n项和为,,相减可得,可得,,即为,即,对任意的成立,由,可得为递减数列,即n=1时取得最大值1−2=−1,可得,即或.【点睛】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.