
--反比例函数练习习题(含答案).doc
6页第十七章 反比例函数一、基础知识1. 定义:一般地,形如(为常数,)的函数称为反比例函数还可以写成2. 反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.⑵比例系数⑶自变量的取值为一切非零实数⑷函数的取值是一切非零实数3. 反比例函数的图像⑴图像的画法:描点法① 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)② 描点(有小到大的顺序)③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交⑶反比例函数的图像是是轴对称图形(对称轴是或)⑷反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引轴轴的垂线,所得矩形面积为4.反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
7. 反比例函数的应用选择题1、反比例函数y=图象经过点(2,3),则n的值是( ).A、-2 B、-1 C、0 D、12、若反比例函数y=(k≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A、(2,-1) B、(-,2) C、(-2,-1) D、(,2)3、已知甲、乙两地相距(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(h)与行驶速度(km/h)的函数关系图象大致是( )t/hv/(km/h)Ot/hv/(km/h)Ot/hv/(km/h)Ot/hv/(km/h)OA.B.C.D.4、若y与x成正比例,x与z成反比例,则y与z之间的关系是( ).A、成正比例 B、成反比例 C、不成正比例也不成反比例 D、无法确定5、一次函数y=kx-k,y随x的增大而减小,那么反比例函数y=满足( ).A、当x>0时,y>0 B、在每个象限内,y随x的增大而减小C、图象分布在第一、三象限 D、图象分布在第二、四象限6、如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y=于点Q,连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积( ).A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度ρ也随之改变.ρ与V在一定范围内满足ρ=,它的图象如图所示,则该气体的质量m为( ).A、1.4kg B、5kg C、6.4kg D、7kg8、若A(-3,y1),B(-2,y2),C(-1,y3)三点都在函数y=-的图象上,则y1,y2,y3的大小关系是( ).A、y1>y2>y3 B、y1<y2<y3 C、y1=y2=y3 D、y1<y3<y29、已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,则m的取值范围是( ).A、m<0 B、m>0 C、m< D、m>10、如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是( ).A、x<-1 B、x>2C、-1<x<0或x>2 D、x<-1或0<x<2填空题11.某种灯的使用寿命为1000小时,它的可使用天数与平均每天使用的小时数之间的函数关系式为 . 12、已知反比例函数的图象分布在第二、四象限,则在一次函数中,随的增大而 (填“增大”或“减小”或“不变”).13、若反比例函数y=和一次函数y=3x+b的图象有两个交点,且有一个交点的纵坐标为6,则b= .14、反比例函数y=(m+2)xm-10的图象分布在第二、四象限内,则m的值为 .15、有一面积为S的梯形,其上底是下底长的,若下底长为x,高为y,则y与x的函数关系是 .16、如图,点M是反比例函数y=(a≠0)的图象上一点,过M点作x轴、y轴的平行线,若S阴影=5,则此反比例函数解析式为 .17、使函数y=(2m2-7m-9)xm-9m+19是反比例函数,且图象在每个象限内y随x的增大而减小,则可列方程(不等式组)为 .18、过双曲线y=(k≠0)上任意一点引x轴和y轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k>0)与双曲线交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1=___________.解答题21、(8分)如图,P是反比例函数图象上的一点,且点P到x轴的距离为3,到y轴的距离为2,求这个反比例函数的解析式.23、(10分)如图,已知A(x1,y1),B(x2,y2)是双曲线y=在第一象限内的分支上的两点,连结OA、OB.(1)试说明y1<OA<y1+;(2)过B作BC⊥x轴于C,当m=4时,求△BOC的面积.24、(10分)如图,已知反比例函数y=-与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB的面积.25、(11分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于M、N两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.反比例函数参考答案:一、选择题1、D; 2、A; 3、C; 4、B; 5、D; 6、C 7、D; 8、B; 9、D; 10、D.二、填空题11、y=; 12、减小; 13、5 ; 14、-3 ;15、y= ; 16、y=-; 17、 ; 18、|k|; 19、 20; 三、解答题21、y=-.23、(1)过点A作AD⊥x轴于D,则OD=x1,AD=y1,因为点A(x1,y1)在双曲线y=上,故x1=,又在Rt△OAD中,AD<OA<AD+OD,所以y1<OA<y1+; (2)△BOC的面积为2. 24、(1)由已知易得A(-2,4),B(4,-2),代入y=kx+b中,求得y=-x+2;(2)当y=0时,x=2,则y=-x+2与x轴的交点M(2,0),即|OM|=2,于是S△AOB=S△AOM+S△BOM=|OM|·|yA|+|OM|·|yB|=×2×4+×2×2=6.25、(1)将N(-1,-4)代入y=,得k=4.∴反比例函数的解析式为y=.将M(2,m)代入y=,得m=2.将M(2,2),N(-1,-4)代入y=ax+b,得解得∴一次函数的解析式为y=2x-2.(2)由图象可知,当x<-1或0<x<2时,反比例函数的值大于一次函数的值.- 6 -。
