
2022年必考点解析沪教版(上海)八年级数学第二学期第二十二章四边形章节训练试卷(无超纲).docx
26页八年级数学第二学期第二十二章四边形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落段AF上,点D的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,长度恰好是方程x2+x﹣1=0的一个正根的线段为( )A.线段BF B.线段DG C.线段CG D.线段GF2、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A.180° B.220° C.240° D.260°3、如图,在中,对角线AC,BD相交于点O,且AC⊥BC,的面积为48,OA=3,则BC的长为( )A.6 B.8 C.12 D.134、如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是( )A.180米 B.110米 C.120米 D.100米5、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE6、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为( )A. B. C.6 D.7、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A.5 B.4 C.3 D.28、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形.下面是某个合作小组的4位同学拟定的方案,其中正确的是( )A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量其内角是否均为直角 D.测量对角线是否垂直9、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正确的结论有( )A.1个 B.2个 C.3个 D.4个10、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.2、一个多边形,每个外角都是,则这个多边形是________边形.3、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE翻折至△AFE,连接CF,则CF的长为___.4、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.5、如图,矩形ABCD的对角线AC,BD交于点O,M在BC边上,连接MO并延长交AD边于点N.若BM = 1,∠OMC = 30°,MN = 4,则矩形ABCD的面积为 _________ .三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形.(2)当四边形BEDF是菱形时,求EF的长.2、如图,□ABCD中,点E、F分别在AB、CD上,且BE=DF.求证:AF=EC.3、如图,矩形ABCD中,E、F是BC上的点,∠DAE=∠ADF.求证:BF=CE.4、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状 ,并直接写出它的面积 .5、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.(1)则∠CDF= (2)若ED=CD,AE=BC,求证:AF=BF.-参考答案-一、单选题1、B【分析】首先根据方程x2+x-1=0解出正根为,再判断这个数值和题目中的哪条线段接近.线段BF=0.5排除,其余三条线段可以通过设未知数找到等量关系.利用正方形的面积等于图中各个三角形的面积和,列等量关系.设DG=m,则GC=1-m,从而可以用m表示等式.【详解】解:设DG=m,则GC=1-m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5.∵S正方形=S△ABF+S△ADG+S△CGF+SAGF,∴1×1=×1×+×1×m+××(1-m)+××m,∴m=.∵x2+x-1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故选:B.【点睛】此题考查的是一元二次方程的解法,运用勾股定理和面积法找到线段的关系是解题的关键.2、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,∴;故选C.【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.3、B【分析】由平行四边形对角线互相平分得到AC的值,由AC⊥BC,可得,代入即可求出BC边长.【详解】解:∵在中,对角线AC,BD相交于点O,∴OA=OC,∵OA=3,∴AC=2OA=6,∵AC⊥BC,∴,∴BC=8.故选:B【点睛】此题考查平行四边形的性质和平行四边形的面积,掌握平行四边形对角线互相平分的性质是解答此题的关键.4、D【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可.【详解】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:D.【点睛】本题考查了多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.5、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴结论正确的是D选项.故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.6、B【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,,,在中,,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键.7、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,∴CD=AB,∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.8、C【分析】根据矩形的判定:(1)四个角均为直角;(2)对边互相平行且相等;(3)对角线相等且平分,据此即可判断结果.【详解】解:A、根据矩形的对角线相等且平分,故错误;B、对边分别相等只能判定四边形是平行四边形,故错误;C、矩形的四个角都是直角,故正确;D、矩形的对角线互相相等且平分,所以垂直与否与矩形的判定无关,故错误.故选:C.【点睛】本题主要考查的是矩形的判定方法,熟练掌握矩形的判定是解题的关键.9、C【分析】根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.【详解】解:①∵四边形ACHI和四边形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正确;②过点B作BM⊥IA,交IA的延长线于点M,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=AI•BM=AI•AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=AD•CN=AD•AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3, 即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理。












