好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

平面一般力系平衡方程其他形式.docx

12页
  • 卖家[上传人]:凯和****啦
  • 文档编号:316872136
  • 上传时间:2022-06-24
  • 文档格式:DOCX
  • 文档大小:20.01KB
  • / 12 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 本文格式为Word版,下载可任意编辑平面一般力系平衡方程其他形式 第九讲内容 一、平面一般力系平衡方程的其他形式 前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的根本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式 1.二力矩形式的平衡方程 在力系作用面内任取两点A、B及X轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 SKIPIF 1 0 (4-6) 式中X轴不与A、B两点的连线垂直 证明:首先将平面一般力系向A点简化,一般可得到过A点的一个力和一个力偶若 SKIPIF 1 0 成立,则力系只能简化为通过A点的合力R或成平衡状态假如 SKIPIF 1 0 又成立,说明R必通过B可见合力R的作用线必为AB连线又因 SKIPIF 1 0 成立,则 SKIPIF 1 0 ,即合力R在X轴上的投影为零,因AB连线不垂直X轴,合力R亦不垂直于X轴,由 SKIPIF 1 0 可推得 SKIPIF 1 0 。

      可见满意方程(4-6)的平面一般力系,若将其向A点简化,其主矩和主矢都等于零,从而力系必为平衡力系 2.三力矩形式的平衡方程 在力系作用面内任意取三个不在一向线上的点A、B、C,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即 SKIPIF 1 0 SKIPIF 1 0 (4-7) 式中,A、B、C三点不在同一向线上 同上面探讨一样,若 SKIPIF 1 0 和 SKIPIF 1 0 成立,则力系合成结果只能是通过A、B两点的一个力(图4-14)或者平衡假如 SKIPIF 1 0 也成立,则合力必然通过C点,而一个力不成能同时通过不在一向线上的三点,除非合力为零, SKIPIF 1 0 才能成立因此,力系必然是平衡力系 综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、式(4-6)、式(4-7),在解题时可以根据概括状况选取某一种形式无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。

      【例4-7】 某屋架如图4-15(a)所示,设左屋架及盖瓦共重 SKIPIF 1 0 ,右屋架受到风力及荷载作用,其合力 SKIPIF 1 0 , SKIPIF 1 0 与BC夹角为 SKIPIF 1 0 ,试求A、B支座的反力 【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X轴和Y轴,如图4-15(b)所示,列出三个平衡方程 SKIPIF 1 0 SKIPIF 1 0 SKIPIF 1 0 SKIPIF 1 0 SKIPIF 1 0 校核 SKIPIF 1 0 说明计算无误 【例4-8】 梁AC用三根支座链杆连接,受一力 SKIPIF 1 0 作用,如图4-16(a)所示不计梁及链杆的自重,试求每根支座链杆的反力 【解】 取AC梁为研究对象,画其受力图,如图4-16(b)所示列平衡方程时,为避免解联立方程组,最好所列的方程中只有一个未知力,因此,取 SKIPIF 1 0 和 SKIPIF 1 0 的交点O1为矩心列平衡方程 SKIPIF 1 0 取 SKIPIF 1 0 与 SKIPIF 1 0 的交点O2为矩心列平衡方程 SKIPIF 1 0 SKIPIF 1 0 取  SKIPIF 1 0 SKIPIF 1 0 校核 SKIPIF 1 0 说明计算无误。

      3.平面力系的特别状况 平面一般力系是平面力系的一般状况除前面讲的平面汇交力系,平面力偶系外,还有平面平行力系都可以看为平面一般力系的特别状况,它们的平衡方程都可以从平面一般力系的平衡方程得到,现探讨如下 (1)平面汇交力系 对于平面汇交力系,可取力系的汇交点作为坐标的原点,图4-17(a)所示,因各力的作用线均通过坐标原点O,各力对O点的矩必为零,即恒有 SKIPIF 1 0 因此,只剩下两个投影方程 SKIPIF 1 0 即为平面汇交力系的平衡方程 (2)平面力偶系 平面力偶系如图4-17(b)所示,因构成力偶的两个力在任何轴上的投影必为零,则恒有 SKIPIF 1 0 和 SKIPIF 1 0 ,只剩下第三个力矩方程,但由于力偶对某点的矩等于力偶矩,则力矩方程可改写为 SKIPIF 1 0 即平面力偶系的平衡方程 (3)平面平行力系 平面平行力系是指其各力作用线在同一平面上并相互平行的力系,如图4-17(C)所示,选OY轴与力系中的各力平行,则各力在X轴上的投影恒为零,则平衡方程只剩下两个独立的方程 SKIPIF 1 0 (4-8) 若采用二力矩式(4-6),可得 SKIPIF 1 0 (4-9) 式中A、B两点的连线不与各力作用线平行。

      平面平行力系只有两个独立的平衡方程,只能求解两个未知量 【例4-9】 图4-18所示为塔式起重机已知轨距 SKIPIF 1 0 ,机身重 SKIPIF 1 0 ,其作用线到右轨的距离 SKIPIF 1 0 ,起重机平衡重 SKIPIF 1 0 ,其作用线到左轨的距离 SKIPIF 1 0 ,荷载P的作用线到右轨的距离 SKIPIF 1 0 ,(1)试证明空载时( SKIPIF 1 0 时)起重机时否会向左倾倒?(2)求出起重机不向右倾倒的最大荷载P 【解】 以起重机为研究对象,作用于起重机上的力有主动力G、P、Q及约束力 SKIPIF 1 0 和 SKIPIF 1 0 ,它们组成一个平行力系(图4-18) 使起重机不向左倒的条件是 SKIPIF 1 0 ,当空载时,取 SKIPIF 1 0 ,列平衡方程 SKIPIF 1 0 SKIPIF 1 0 所以起重机不会向左倾倒 使起重机不向右倾倒的条件是 SKIPIF 1 0 ,列平衡方程 SKIPIF 1 0 欲使 SKIPIF 1 0 ,则需 SKIPIF 1 0 SKIPIF 1 0 当荷载 SKIPIF 1 0 时,起重机是稳定的。

      二、物体系统的平衡 前面研究了平面力系单个物体的平衡问题但是在工程结构中往往是由若干个物体通过一定的约束来组成一个系统这种系统称为物体系统例如,图示4-19(a)所示的组合梁,就是由梁AC和梁CD通过铰C连接,并支承在A、B、D支座而组成的一个物体系统 在一个物体系统中,一个物体的受力与其他物体是紧凑相关的;整体受力又与局部紧凑相关的物体系统的平衡是指组成系统的每一个物体及系统的整体都处于平衡状态 在研究物体系统的平衡问题时,不仅要知道外界物体对这个系统的作用力,同时还应分析系统内部物体之间的相互作用力寻常将系统以外的物体对这个系统的作用力称为外力,系统内各物体之间的相互作用力称为内力例如图4-19(b)的组合梁的受力图,荷载及A、B、D支座的反力就是外力,而在铰C处左右两段梁之间的相互作用的力就是内力 应当留神,外力和内力是相对的概念,是对一定的考察对象而言的,例如图4-19组合梁在铰C处两段梁的相互作用力,对组合梁的整体来说,就是内力,而对左段梁或右段梁来说,就成为外力了 当物体系统平衡时,组成该系统的每个物体都处于平衡状态,因而,对于每一个物体一般可写出三个独立的平衡方程。

      假如该物体系统有 SKIPIF 1 0 个物体,而每个物体又都在平面一般力系作用下,则就有 SKIPIF 1 0 个独立的平衡方程,可以求出 SKIPIF 1 0 个未知量但是,假如系统中的物体受平面汇交力系或平面平行力系的作用,则独立的平衡方程将相应减少,而所能求的未知量数目也相应减少当整个系统中未知量的数目不超过独立的平衡方程数目,则未知量可由平衡方程全部求出,这样的问题称为静定问题当未知量的数目超过了独立平衡方程数目,则未知量由平衡方程就不能全部求出,这样的问题,则称为超静定问题,在静力学中,我们不考虑超静定问题 在解答物体系统的平衡问题时,可以选取整个物体系统作为研究对象,也可以选取物体系统中某部分物体(一个物体或几个物体组合)作为研究对象,以建立平衡方程由于物体系统的未知量较多,应尽量避免从总体的联立方程组中解出,寻常可选取整个系统为研究对象,看能否从中解出一或两个未知量,然后再分析每个物体的受力状况,判断选取哪个物体为研究对象,使之建立的平衡方程中包含的未知量少,以简化计算 下面举例说明求解物体系统平衡问题的方法 【例4-10】 组合梁受荷载如图4-20(a)所示。

      已知 SKIPIF 1 0 SKIPIF 1 0 , SKIPIF 1 0 ,梁自重不计,求支座A、C的反力 【解】 组合梁由两段梁AB和BC组成,作用于每一个物体的力系都是平面一般力系,共有6个独立的平衡方程;而约束力的未知数也是6(A处有三个,B处有两个,C处有1个)首先取整个梁为研究对象,受力图如图4-20(b)所示 SKIPIF 1 0 其余三个未知数 SKIPIF 1 0 、 SKIPIF 1 0 和 SKIPIF 1 0 ,无论怎样选取投影轴和矩心,都无法求出其中任何一个,因此,务必将AB梁和BC梁分开考虑,现取BC梁为研究对象,受力图如图4-20(c)所示 SKIPIF 1 0 SKIPIF 1 0 SKIPIF 1 0 再回到受图4-20(b) SKIPIF 1 0 SKIPIF 1 0 校核:对整个组合梁,列出 SKIPIF 1 0 SKIPIF 1 0 可见计算无误。

      【例4-11】 钢筋混凝土三铰刚架受荷载如图4-21(a)所示,已知 SKIPIF 1 0 , SKIPIF 1 0 ,求支座A、B和铰C的约束反力 【解】 三铰刚架由左右两半刚架组成,受到平面一般力系的作用,可以列出六个独立的平衡方程分析整个三铰刚架和左、右两半刚架的受力,画出受力图,如图(b)、(c)、(d)所示,可见,系统的未知量总计为六个,可用六个平。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.