
黄金分割法程序.doc
9页黄金分割法黄金分割法是通过不断缩短搜索区间的长度来寻求一维函数的极小点,这种方法的基本原理是:在搜索区间[a,b]内按如下规则对称地取两点 a1 和 a2a1=a+0.382(b-a); a2=a+0.618(b-a);黄金分割法的搜索过程是:1) 给出初始搜索区间 [a,b] 及收敛精度 e ,将 赋以 0.6182) 计算 a1 和 a2,并计算起对应的函数值 f(a1),f(a2); , 3) 根据期间消去法原理缩短搜索区间,为了能用原来的坐标点计算公式,需进行区间名城的代换,并在保留区间中计算一个新的试验点及其函数值4) 检查区间是否缩短到足够小和函数值收敛到足够近,如果条件不满足则返回到步骤 25) 如果条件满足,则取最后两试验点的平均值作为极小点的数值近似解黄金分割法的流程图及程序清单需要说明的是搜索区间[a,b]不需要给定,只需输入搜索精度 e;程序由四个子程序构成;(1):输入输出子程序 io() ;(2):float fc (float x)求输入函数在某一点的值;(3)void findqujian(float a[3],float f[3])确定搜索区间;(4):float xunyou(float *value)寻找最小值 黄金分割法程序运行截图#include "iostream.h"#include "math.h"#include "stdio.h"#include "conio.h"#define steplength 0.01#define n 5float e;float a,b,c,d,g;float q[5];void io(){cout=0;i--)u=u*x+q[i];return u;}void findqujian(float a[3],float f[3]){float t=float(steplength), a1,f1,ia;a[0]=0;f[0]=fc(a[0]);for(int i=0;;i++){a[1]=a[0]+t;f[1]=fc(a[1]);if(f[1]=e){t=-t;a[0]=a[1];f[0]=f[1];}else{ if(ia==1)return;t=t/2;ia=1;}}for(i=0;;i++){a[2]=a[1]+t;f[2]=fc(a[2]);if(f[2]>f[1]) break;t=2*t;a[0]=a[1]; f[0]=f[1];a[1]=a[2]; f[1]=f[2];}if(a[0]>a[2]){a1=a[0];f1=f[0];a[0]=a[2];f[0]=f[2];a[2]=a1; f[2]=f1;}return;}float xunyou(float *value){float a1[3],f1[3],a[4],f[4];float aa;findqujian(a1,f1);a[0]=a1[0];f[0]=f1[0];a[3]=a1[2];f[3]=f1[2];a[1]=a[0]+float(0.382)*(a[3]-a[0]);a[2]=a[0]+float(0.618)*(a[3]-a[0]);f[1]=fc(a[1]);f[2]=fc(a[2]);for(int i=0;;i++){if(f[1]>=f[2]){a[0]=a[1];f[0]=f[1];a[1]=a[2];f[1]=f[2];a[2]=a[0]+float(0.618)*(a[3]-a[0]);f[2]=fc(a[2]);}else{a[3]=a[2];f[3]=f[2];a[2]=a[1];f[2]=f[1];a[1]=a[0]+float(0.382)*(a[3]-a[0]);f[1]=fc(a[1]);}if(fabs(a[3]-a[0])#include #define EP 0.001main(){float M1,M2,min,H,x1,x2;int n=0;x1=100;x2=25;do{n=n+1;M1=x1;x1=2+x2; /* 直接用数学方法求,最小值 :X=-B/2/A;Y=X1*X1-2*(2+X2)*X1+2*X2*X2; */M2=x2;x2=x1/2; /* 直接用数学方法求,最小值 :X=-B/2/A;Y=2(X2*X2-X2*X1)-X1*X1-4*X1; */H=x2+x1-M1-M2;printf("\n X1 is %f,X2 is %f, H is %f.",x1,x2,H);}while(fabs(H)>EP);min=pow(x1,2)+2*pow(x2,2)-4*x1-2*x1*x2;printf("\n The Min is %f.",min);printf("\n The X1 is %f,The X2 is %f.",x1,x2);printf("\n The Number is %d.",n);}。












