好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

圆柱体体积的计算教学设计.doc

6页
  • 卖家[上传人]:公****
  • 文档编号:384686292
  • 上传时间:2023-03-17
  • 文档格式:DOC
  • 文档大小:63KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 《圆柱体体积的计算》教学设计彭军 奉节县兴隆镇新贺小学概述 《圆柱体的体积计算》是小学数学人教版第十二册中第二单元中的一课时内容本节课,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题,本节课的学习为学习圆锥体的体积计算奠定基础教学目标分析一、知识技能:  1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会用公式计算圆柱的体积,解决生活中的实际问题二、过程与方法:通过学生的小组合作学习,充分利用资源、学具等去探究推导圆柱体体积的计算公式三、情感态度价值观:1、充分利用资源、学具,,通过小组合作学习,激励和培养学生的学习兴趣,求知欲望2、培养学生动手操作、实验、观察等良好的学习态度学习者特征分析1、这是乡村六年级学生乡村学生的知识面窄,动手能力差,积累也少2、学生在五年级时学习过了长方体以及正方体的体积计算,得出:“底面积×高=长方体体积”的结论,学生知道了只要知道底面积和高就可以求体积3、学生的学具准备充分,便于动手操作。

      4、培养学生小组合作、探究、交流、观察、汇报的习惯已经养成教学策略选择与设计本节课,以“三维”目标为依据,以学生的原有学习状况为基础,主要是利用旧知识的迁移,充分利用资源、学具等有效手段来进行教与学,培养学生积极的小组合作学习习惯,提高探究圆柱体体积的公式推导的兴趣,掌握圆柱体体积公式的推导过程,理解并掌握计算公式,并能根据公式解决生活中的实际问题基于本节课的具体情况,我采用“演示法”、“示范-模仿法”等教学策略主要是培养学生自己动手操作的能力等教学策略教学资源与工具设计 1、教学资源:多媒体课件(自制课件)、圆柱体教具 2、学具:圆柱体模型教学重点  理解圆柱体体积的公式以及会计算.教学难点  掌握圆柱体体积公式的推导过程. 教学过程 一、复习准备  (一)教师提问(课件出示)  1.什么叫体积?怎样求长方体的体积?正方体的体积?2、长方体、正方体体积计算的统一公式是什么?3.圆的面积公式是什么?圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、教学新知(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积”)1.教师演示:把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.  3.启发学生思考、讨论:  (1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)  (2)通过刚才的实验你发现了什么?  ①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.  ②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.  ③近似长方体的高就是圆柱的高,没有变化.  4.学生根据圆的面积公式推导过程,进行猜想.  (1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?  (2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?  (3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?  5.启发学生说出通过以上的观察,发现了什么?  (1)平均分的份数越多,拼起来的形体越近似于长方体.  (2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.  6.推导圆柱的体积公式  (1)学生分组讨论:圆柱体的体积怎样计算?  (2)学生汇报讨论结果,并说明理由.  因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)  (3)用字母表示圆柱的体积公式.(板书:V=Sh)  (二)教学例4.  1.出示例4  例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?  2.1米=210厘米  50×210=10500(立方厘米)  答:它的体积是10500立方厘米.  2.反馈练习  (1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?  (2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?   (三)教学例5.  1.出示例5  例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:   20 2   =3.14×   =3.14×100  =314(平方厘米)  水桶的容积:  314×25  =7850(立方厘米)  =7.8(立方分米)  答:这个水桶的容积大约是7.8立方分米.  三、课堂小结  通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2、圆柱体积公式的。

      3.公式的应用.四、课堂练习(一)填表底面积S(平方米)高h(米)圆柱的体积V(立方米)153  6.44    (二)求下面各圆柱的体积.    五、板书设计开始教学流程图 教师复习引入出示复习题为新知准备动画演示圆柱体体积动手操作学生应用公式总结结束七、教学评价设计 本节课从以下几个方面进行评价:1.评价内容:课堂表现评价、学习效果评价(课堂学习效果评价+作业)、小组合作评价2.评价方式:自评、小组评、教师评相结合;八、 教学反思: 1、本节课在学生自己动手操作的时候,没有关注到学困生 2、问题的设计给学困生回答的时间少 3、没有分层设计课堂巩固习题。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.