好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

第10章时间序列数据的基本回归分析培训课件.ppt

39页
  • 卖家[上传人]:yulij****0329
  • 文档编号:242199432
  • 上传时间:2022-01-18
  • 文档格式:PPT
  • 文档大小:819KB
  • / 39 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第十章 时间序列数据的基本回归分析10.1 时间 序列数据的性质我们应该怎样认识时间序列数据的随机性?回答:很明显,经济时间序列满足作为随机变量结果所要求的直观条件,这些变量的结果都无法事先预料到例如,我们今天不知道道琼斯工业指数在下一个交易日收盘时会是多少,我们也不知道加拿大下一年的年产出增长会是多少规范地,一个标有时间脚标的随机变量序列被称为一个随机过程(stochastic process)或时间序列过程(time series process)10.2 时间 序列回归模型的例子1、静态模型我们将有两个变量(例如y和z)的时间序列数据标注相同的时期,将这样的y和z联系起来即为一个静态模型(static model):“静态模型”的名称来源于我们正在模型化y和z的同期关系的事实在一个静态回归模型中也可以有几个解释变量2、有限分布滞后模型在有限分布滞后模型(finite distributed lag model,FDL)中,我们容许一个或多个变量对y的影响有一定时滞一个q阶有限分布滞后模型可写成:静态模型是上式的一种特例,当 都为0即可冲击倾向总是同期z的系数 长期倾向便是所有变量 的系数之和。

      10.3 经典假设下OLS的有限样本性质假定 TS.1(线性于参数)假定 TS.2(无完全共线性):在样本中,没有任何自变量是恒定不变的,或者是其他自变量的一个完全线性组合假定 TS.3(零条件均值):假定 TS.4(同方差性):该假定意味着, 不能依赖于X(只要 和X相互独立就足够了满足TS.3即可),且在所有时期都保持不变假定 TS.5(无序列相关):【提问:我们为什么不假定不同横截面观测的误差是无关的呢?答:前述有随机抽样的假定,则以样本中所有解释变量为条件,不同观测的误差是独立的因此,就我们当前目的而言,序列相关只是时间序列和回归中的一个潜在问题假定 TS.6(正态性):误差 独立于X,且具有独立同分布定理 10.1(OLS的无偏性) 在假定TS.1、TS.2和TS.3下,以X为条件,OLS估计量是无偏的,并因此下式也无条件地成立:定理10.2(OLS的样本方差) 在时间序列高斯-马尔可夫假定TS.1-TS.5下,以X为条件, 的条件方差为: 其中, 是 的总平方和, 为由 对所有其他自变量回归得到的定理10.3( 的无偏估计) 在假定TS.1-TS.5下,估计量 是 的一个无偏估计量,其中df=n-k-1定理10.4(高斯-马尔可夫定理) 在假定TS.1-TS.5下,以X为条件,OLS估计量是最优线性无偏估计量。

      定理10.5(正态抽样分布) 在时间序列的CLM假定TS.1-TS.6下,以X为条件,OLS估计量遵循正态分布而且,在虚拟假设下,每个t统计量服从t分布,F统计量服从F分布,通常构造的置信区间也是确当的例10.1 静态菲利普斯曲线研究失业和通货膨胀之间是否存在替代关系 H0: H1:文件:PHILLIPS.RAW命令:reg inf unem结果: 上述方程并没有表明unem和inf之间存在替代关系(因为 )分析中可能存在的问题:(1)CLM假定不成立(12章);(2)静态菲利普斯曲线不是最佳模型(附加预期的菲利普斯曲线)例10.2 通货膨胀和赤字对利率的影响1948-2003年数据 i3:三月期国债利率; inf:据消费者价格指数得出的年通货膨胀率 def:联邦赤字占GDP 的百分比文件:INTDEF.RAW命令:reg i3 inf def结果:Inf与def对于i3的影响在统计上十分显著,即通货膨胀上升或赤字相对规模的扩大都会提高短期利率但前提是CLM假定成立)10.4 函数形式、虚拟变 量和指数在应用研究中经常出现具有恒定百分比效应的时间序列回归(自然对数形式)将对数函数形式用于分布滞后模型:方程中的冲击倾向 也被称为短期弹性(short-run elasticity):它度量了GDP增长1%时货币供给的即期百分比变化;长期倾向 有时也被称为长期弹性(long-run elasticity):它度量了GDP持久地增长1%,4个月后货币供给的百分比变化。

      二值或虚拟自变量在时间序列应用中也相当有用既然观测单位是时间,所以虚拟变量代表某特定事件在每个时期是否发生在事件研究(event study)中,二值变量是关键成分事件研究的目标是为了确定某个特定的事件是否会影响到某项结果讨论指数(index number)的概念: (1)基期、基值; (2)标准的经济产出都是用真实价值表示的;例10.3 波多黎各的就业和最低工资研究美国的最低工资对波多黎各就业的影响 prepopt:波多黎各第t年的就业率(就业人口占总人口的比例); usgnpt:美国的真实国民生产总值(以10亿美元计) mincov:度量最低工资相对于平均最低工资的重要性mincov=(avgmin/avgwage)*avgcov,其中,avgmin是平均最低工资,avgwage是总体平均工资,avgcov是平均工资覆盖率文件:PRMINWGE.RAW命令: reg lprepop lmincov lusgnp结果:prepop对mincov的估计弹性是-0.154,而根据t=-2.37,它在统计上是显著的因此,更高的最低工资降低了就业率,这与古典经济学的预言一样例10.4 个人税收豁免对生育率的影响总生育率(gfr)是每个1000个育龄妇女生育孩子的个数。

      对1913-1984年这段时间,方程 pe:个人税收减免的实际美元金额; ww2:在1941-1945年间为1(第二次世界大战); pill:从避孕药开始用于控制生育的1963年后一直为1文件:FERTIL3.RAW命令:sum pe reg gfr pe ww2 pill结果:考虑生育率对pe变化的反应滞后,估计一个包含两期滞后的分布滞后模型命令:reg gfr pe ww2 pill pe_1 pe_2在这个回归中,我们只有70次观测,这是因为pe滞后两次减少了2次观测pe变量的系数估计得很不准确,每一个变量都不是个别显著的事实上,pet,pet-1和pet-2明显相关,这种多重共线性使得估计每个滞后的影响非常困难1、pet,pet-1和pet-2是联合显著的,F统计量的p值为0.012命令:test pe pe_1 pe_2因此,pe的确对gfr有影响,但我们并没有足够好的估计值判断这种影响是即期的,还是存在一期或者两期的滞后(或都有一些)2、实际上, pet-1和pet-2不是联合显著的,因而我们使用静态模型还算合理 命令:test pe_1 pe_2式(10.19)中估计的(命令:display _bpe+_bpe_1+_bpe_2) LRP=0.073-0.0058+0.034=0.101但我们从式(10.19)中无法得到这个估计值的标准误。

      为得到LRP估计值标准误的技巧:令 表示LRP,并将 代入模型便得到基于上式,可通过将gfrt对pet,(pet-1-pe),(pet-2-pet),ww2t和pillt进行回归而得到 及其标准差命令: gen dif1=pe_1-pe gen dif2=pe_2-pe reg gfr pe dif1 dif2 ww2 pill说明 在较小的显著性水平上异于0本例说明:即使 都不是个别显著的,但LRP非常显著例10.5 反倾销调查和化学产品进口在美国开展反倾销调查,而后制定反倾销生产条例的过程中,一些有意思的问题:(1)在反倾销调查前的一段时期进口量异常吗?(2)反倾销调查后进口有明显的变化吗?(3)有利于美国产业的决策执行后,进口究竟减少了多少?定义的3个虚拟变量:befile6:在开始调查前的六个月为1;affile6:表示开始调查后的六个月;afdec6:代表调查结束并确认构成倾销行为后的六个月;因变量chnimp:从中国进口的数量(取对数形式);解释变量包括:(1)化工产量指标chempi;(2)石油产量gas;(3)汇率指标rtwex;(均使用对数形式)文件:BARIUM.RAW命令: reg lchnimp lchempi lgas lrtwex befile6 affile6 afdec6结果:计算出准确的百分比变化(决策执行后,进口减少的比率)命令:display 100*(exp(_bafdec6)-1)例10.6 选举结果和经济形势费尔利用1916-1992年(每4年一次)的数据 得到的20次观测,解释了两党选举中民主党候选人获得选票的比例。

      估计费尔模型的一个简化形式:其中: demvote:两党选举中民主党候选人获得选票的比例; partyWH:虚拟变量,民主党在白宫执政时取值为1, 共和党执政时取值为-1; incum:民主党在任总统参加竞选时定义为1,共和党在任总统参加竞选时定义为-1,其他情况为0; gnews:现任政府执政的前15个季度中,人均真实产出增长率超过2.9%的季度数; inf:本届政府前15个季度的年均通货膨胀率当partyWH为1时, 度量了好的经济消息对执政党的影响; 度量了通货膨胀对执政党的影响关注交互项哦!文件:FAIR.RAW命令: reg demvote partyWH incum pWHgnews pWHinf if year1996结果:解释:除了partyWH外,所有变量都在5%的水平上显著处于执政党的位置可以带来相当于所得选票份额5.4%的选票另外,好的经济消息会产生正的影响:每个季度的好消息相当于1.1个百分点通货膨胀会产生负的影响:如果平均年通货膨胀率上升2个百分点,执政党在选举中会失去1.5个百分点的选票利用上述方程的预测:display _b_cons+_bpartyWH+_bincum+_bpWHgnews*3+_bpWHinf*3.019预测结果:10.5 趋势 和季节性描述有趋势的时间序列很多经济时间序列都有随着时间而上升的共同趋势。

      忽略两个序列按相同或相反趋势延伸的事实,会导致如下错误结论:认为一个变量的变化由另一个变量的变化所致在很多情况下,两个时间序列过程表现出相关性仅仅是因为,由于某些无法观测因素的作用,二者具有共同的时间趋势而已线性时间趋势(linear time trend):各期变化值相同指数趋势(exponential trend): 各期具有相同的平均增长率在回归分析中使用趋势变量仅因为每个变量都随着时间的推移而增长,便得到两个或多个趋势变量之关系的现象,便是谬误回归(spurious regression problem)考虑一个yt受两个可观测因素xt1和xt2影响的模型除了这两个变量以外,还有一些无法观测的因素也随着时间的推移而系统地增长或缩减满足以上特征的模型为:它可以理解成xt3=t是的多元线性回归如果上式省略掉t而只做yt对xt1和xt2的回归,一般会得到 和 的偏误估计值以下例说明时间趋势如何导致谬误回归例10.7 住房投资与价格对美国1947-1988年住房投资和住房价格指数的年度观测文件:HSEINV.RAW变量含义: invpc:真实人均住房投资(以千美元计); price:住房价格指数(1982=1)。

      命令1:reg linvpc lprice结果1: 人均投资对价格的弹性非常大,且统计上显著;但我们要小心此处invpc和price都有上升的趋势命令2:reg linvpc t reg lprice t结果2:命令3:reg linvpc lprice t结果3:趋势系数和标准误(虽然不一定可靠)揭示了上升趋势现在结论大不相同:估计出的价格弹性是负的,而且在统计上也非显著异于0因而前一回归方程为invpc和price之间的谬误关系在有些情形中,若自变量和因变量有不同类型的趋势(比如一个向上而另一个向下),增加一个时间趋势可使关键解释变量更显著,但自变量围绕其趋势线的变动会导致因变量偏离其趋势线的变动以例10.8。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.