好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

特效提高高考数学一轮精品复习 . 直线与圆、圆与圆的位置关系题库 理.doc

7页
  • 卖家[上传人]:王****
  • 文档编号:320975168
  • 上传时间:2022-07-02
  • 文档格式:DOC
  • 文档大小:176.50KB
  • / 7 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 9.4 直线与圆、圆与圆的位置关系一、选择题1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为(  ).A.4 B.3 C.2 D.1解析 法一 (直接法)集合A表示圆,集合B表示一条直线,又圆心(0,0)到直线x+y=1的距离d==<1=r,所以直线与圆相交,故选C.法二 (数形结合法)画图可得,故选C.答案 C2.过圆x2+y2=1上一点作圆的切线与x轴、y轴的正半轴交于A、B两点,则|AB|的最小值为(  )A. B.C.2 D.3解析 设圆上的点为(x0,y0),其中x0>0,y0>0,则切线方程为x0x+y0y=1.分别令x=0,y=0得A(,0),B(0,),∴|AB|==≥=2.答案 C3.若直线2x-y+a=0与圆(x-1)2+y2=1有公共点,则实数a的取值范围(  ).A.-2-<a<-2+ B.-2-≤a≤-2+C.-≤a≤ D.-<a<解析 若直线与圆有公共点,即直线与圆相交或相切,故有≤1,解得-2-≤a≤-2+.答案 B4.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=(  ).A.4 B.4 C.8 D.8解析 设与两坐标轴都相切的圆的方程为(x-a)2+(y-a)2=a2,将点(4,1)代入得a2-10a+17=0,解得a=5±2,设C1(5-2,5-2),则C2(5+2,5+2),则|C1C2|==8.答案 C5.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M、N两点,若|MN|≥2,则k的取值范围是(  ).A. B.C. D.解析 如图,若|MN|=2,则由圆与直线的位置关系可知圆心到直线的距离满足d2=22-()2=1.∵直线方程为y=kx+3,∴d==1,解得k=±.若|MN|≥2,则-≤k≤.答案 B6.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系是(  )A.a2+2a+2b-3=0B.a2+b2+2a+2b+5=0C.a2+2a+2b+5=0D.a2-2a-2b+5=0解析 即两圆的公共弦必过(x+1)2+(y+1)2=4的圆心,两圆相减得相交弦的方程为-2(a+1)x-2(b+1)y+a2+1=0,将圆心坐标(-1,-1)代入可得a2+2a+2b+5=0.答案 C7.直线与圆相交于两点,若,则的取值范围是( )A. B. C. D.答案 B二、填空题8.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C截得的弦长为2,则过圆心且与直线l垂直的直线的方程为________.解析 由题可知,设圆心的坐标为(a,0),a>0,则圆C的半径为|a-1|,圆心到直线l的距离为,根据勾股定理可得,()2+()2=|a-1|2,解得a=3或a=-1(舍去),所以圆C的圆心坐标为(3,0),则过圆心且与直线l垂直的直线的方程为x+y-3=0.答案 x+y-3=09.过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为,则直线l的斜率为________.解析 将圆的方程化成标准方程为(x-1)2+(y-1)2=1,其圆心为(1,1),半径r=1.由弦长为得弦心距为.设直线方程为y+2=k(x+1),即kx-y+k-2=0,∴=,化简得7k2-24k+17=0,∴k=1或k=.答案 1或10.已知直线x+y+m=0与圆x2+y2=2交于不同的两点A、B,O是坐标原点,|+|≥||,那么实数m的取值范围是________.解析 方法1:将直线方程代入圆的方程得2x2+2mx+m2-2=0,Δ=4m2-8(m2-2)>0得m2<4,即-22,b>2).(1)求证:(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程;(3)求△AOB面积的最小值.解析 (1)证明:圆的标准方程是(x-1)2+(y-1)2=1,设直线方程为+=1,即bx+ay-ab=0,圆心到该直线的距离d==1,即a2+b2+a2b2+2ab-2a2b-2ab2=a2+b2,即a2b2+2ab-2a2b-2ab2=0,即ab+2-2a-2b=0,即(a-2)(b-2)=2.(2)设AB中点M(x,y),则a=2x,b=2y,代入(a-2)(b-2)=2,得(x-1)(y-1)=(x>1,y>1).(3)由(a-2)(b-2)=2得ab+2=2(a+b)≥4,解得≥2+(舍去≤2-),当且仅当a=b时,ab取最小值6+4,所以△AOB面积的最小值是3+2.16.已知圆C的方程为x2+y2=4.(1)求过点P(1,2)且与圆C相切的直线l的方程;(2)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2,求直线l的方程;(3)圆C上有一动点M(x0,y0),=(0,y0),若向量=+,求动点Q的轨迹方程,并说明此轨迹是什么曲线.解析 (1)显然直线l的斜率存在,设切线方程为y-2=k(x-1),则由=2,得k1=0,k2=-,从而所求的切线方程为y=2和4x+3y-10=0.(2)当直线l垂直于x轴时,此时直线方程为x=1,l与圆的两个交点坐标为(1,)和(1,-),这两点的距离为2,满足题意;当直线l不垂直于x轴时,设其方程为y-2=k(x-1),即kx-y-k+2=0,设圆心到此直线的距离为d(d>0),则2=2,得d=1,从而1=,得k=,此时直线方程为3x-4y+5=0,综上所述,所求直线方程为3x-4y+5=0或x=1.(3)设Q点的坐标为(x,y),M点坐标是(x0,y0),=(0,y0),∵=+,∴(x,y)=(x0,2y0)⇒x=x0,y=2y0.∵x+y=4,∴x2+2=4,即+=1.∴Q点的轨迹方程是+=1,轨迹是一个焦点在y轴上的椭圆.7。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.