
河北省保定市八年级下学期数学期中考试试卷.doc
15页河北省保定市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、 单选题 (共10题;共20分)1. (2分) (2019九上·融安期中) 下列手势解锁图案中,是中心对称图形的是( ) A . B . C . D . 2. (2分) 下列调查中,适合用全面调查方式的是( )A . 了解一批灯泡的使用寿命 B . 了解一批炮弹的杀伤半径 C . 了解某班学生50米跑的成绩 D . 了解一批袋装食品是否含有防腐剂 3. (2分) 大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( )A . 0.1 B . 0.2 C . 0.3 D . 0.7 4. (2分) 下列各式从左到右的变形正确的是( )A . B . C . D . 5. (2分) (2020八上·石景山期末) 使得分式 有意义的 m 的取值范围是( ) A . m≠0 B . m≠2 C . m≠-3 D . m>-3 6. (2分) (2019·越秀模拟) 下列说法中,正确是( ) A . 一组对边平行,另一组对边相等的四边形是平行四边形 B . 矩形的对角线互相垂直 C . 菱形的对角线互相垂直且平分 D . 对角线互相垂直,且相等的四边形是正方形 7. (2分) (2017八下·诸城期中) 如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是( ) A . 24 B . 18 C . 16 D . 12 8. (2分) 下列说法中正确的是( )A . 两条对角线相等的四边形是矩形 B . 两条对角线互相垂直的四边形是菱形 C . 两条对角线互相垂直且相等的四边形是正方形 D . 两条对角线互相平分的四边形是平行四边形 9. (2分) 如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )A . 6 B . 5 C . D . 10. (2分) (2017·青岛模拟) 如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )A . B . 2 C . 3 D . 2 二、 填空题 (共8题;共8分)11. (1分) (2019八下·泰兴期中) 六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为________. 12. (1分) (2019·江海模拟) 若式子 的值为零,则x的值为________. 13. (1分) (2017八下·东城期中) 在菱形 中, ,若菱形的周长为 ,则此菱形的面积为________. 14. (1分) (2020八上·河池期末) 若 是一个完全平方式,则常数k的值为 ________. 15. (1分) 在口ABCD中,∠B=50°,AB=5cm, BC=7cm,则∠D=________°, ABCD的周长为________cm. 16. (1分) 如果关于x的分式方程 =1﹣ 有增根,那么m的值是________. 17. (1分) (2019七下·景县期中) 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角、当小球第1次碰到矩形的边时的点为P1 , 第2次碰到长方形的边时的点为P2……第n次碰到矩形的边时的点为Pn.则点P4的坐标是________,点P2019的坐标是________. 18. (1分) (2017·江北模拟) 如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE,将△ADE沿AD翻折得△ADE′,连接E′C交BD于H,若BG=2,则四边形AGHE′的面积是________. 三、 解答题 (共9题;共77分)19. (10分) (2016八上·怀柔期末) 计算: . 20. (10分) (2017八上·罗山期末) 解方程: . 21. (5分) (2017·大石桥模拟) 先化简,再求值: ÷(a﹣1﹣ )其中a是方程x2+2x=8的一个根.22. (12分) (2016·镇江) 现如今,通过朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别:A(0﹣4000步)(说明:“0﹣4000”表示大于等于0,小于等于4000,下同),B(4001﹣8000步),C(8001﹣12000步),D(12001﹣16000步),E(16001步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图. 请你根据图中提供的信息解答下列问题:(1) 将图1的条形统计图补充完整; (2) 已知小张的朋友圈里共500人,请根据本次抽查的结果,估计在他的朋友圈里6月9日那天行走不超过8000步的人数. 23. (10分) (2018·赣州模拟) 如图,AE为菱形ABCD的高,请仅用无刻度的直尺按要求画图.(不写画法,保留画图痕迹).(1) 在图1中,过点C画出AB边上的高;(2) 在图2中,过点C画出AD边上的高.24. (5分) 嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD, 求证:四边形ABCD是 四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等25. (5分) (2017八下·揭西期末) 某体育用品商场分别用10000元购进A种品牌、用7500元购进B种品牌的自行车进行销售,已知B种品牌的自行车的进价比A种品牌的高50%,所购进的A种品牌的自行车比B种品牌的多10辆,求每辆A种品牌的自行车的进价。
26. (10分) 问题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.(1) 【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG的位置,从而发现EF=BE+FD,请你利用图①证明上述结论.(2) 【类比引申】如图②,在四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E,F分别在边BC,CD上,则当∠EAF与∠BAD满足________关系时,仍有EF=BE+FD.请说明理由.________(3) 【探究应用】如图③,在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80 m,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC,CD上分别有景点E,F,且AE⊥AD,DF=40( -1)m,现要在E,F之间修一条笔直的道路,求这条道路EF的长(结果精确到1 m,参考数据: ≈1.41, ≈1.73).27. (10分) (2019八下·博罗期中) 如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C、D不重合). (1) 如图①,当α=90°时,求证:DE+DF=AD. (2) 如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为 ,请给出证明. (3) 在(2)的条件下,将∠QPN绕点P旋转,若旋转过程中∠QPN的边PQ与边AD的延长线交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明. 第 1 页 共 1 页参考答案一、 单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、 填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、 解答题 (共9题;共77分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、25-1、26-1、26-2、26-3、27-1、27-2、27-3、。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






