
2022年高考数学一轮复习第7章立体几何7.4直线平面平行的判定与性质学案理.doc
25页2022年高考数学一轮复习第7章立体几何7.4直线平面平行的判定与性质学案理[知识梳理]1.直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理3.必记结论(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.[诊断自测]1.概念思辨(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( )(2)若直线 a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )答案 (1)× (2)× (3)× (4)√2.教材衍化(1)(必修A2P61T1(2))如果直线a平行于平面α,直线b∥a,则b与α的位置关系是 ( )A.b与α相交 B.b∥α或b⊂αC.b⊂α D.b∥α答案 B解析 两条平行线中的一条与已知平面相交,则另一条也与已知平面相交,所以由直线b∥a,可知若b与α相交,则a与α也相交,而由题目已知,直线a平行于平面α,所以b与α不可能相交,所以b∥α或b⊂α.故选B.(2)(必修A2P58T3)已知m,n表示两条不同的直线,α,β,γ表示三个不重合的平面,下列命题中正确的个数是( )①若α∩γ=m,β∩γ=n,且m∥n,则α∥β;②若m,n相交且都在α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;③若m∥α,m∥β,则α∥β;④若m∥α,n∥β,且m∥n,则α∥β.A.1 B.2 C.3 D.4答案 A解析 ①仅满足m⊂α,n⊂β,m∥n,不能得出α∥β,此命题不正确;②设m,n确定平面为γ,则有α∥γ,β∥γ,从而α∥β,此命题正确;③④均不满足两个平面平行的条件,故③④均不正确.故选A.3.小题热身(1)如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是( )A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°答案 D解析 选项A,B,C显然错误.∵PA⊥平面ABC,∴∠PDA是直线PD与平面ABC所成的角.∵ABCDEF是正六边形,∴AD=2AB.∵tan∠PDA===1,∴直线PD与平面ABC所成的角为45°.故选D.(2)已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,现给出六个命题:①⇒a∥b;②⇒a∥b;③⇒α∥β;④⇒α∥β;⑤⇒a∥α;⑥⇒a∥α.其中正确的命题是________.(填序号)答案 ①④解析 由三线平行公理,知①正确;两条直线同时平行于一平面,这两条直线可相交、平行或异面,故②错误;两个平面同时平行于一直线,这两个平面相交或平行,故③错误;面面平行具有传递性,故④正确;一直线和一平面同时平行于另一直线,这条直线和平面平行或直线在平面内,故⑤错误;一直线和一平面同时平行于另一平面,这条直线和平面可能平行也可能直线在平面内,故⑥错误.题型1 平行关系命题的真假判定 (xx·豫西五校联考)已知m,n,l1,l2表示不同直线,α,β表示不同平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是( )A.m∥β且l1∥α B.m∥β且n∥βC.m∥β且n∥l2 D.m∥l1且n∥l2排除法.答案 D解析 对于选项A,当m∥β且l1∥α时,α,β可能平行也可能相交,故A不是α∥β的充分条件;对于选项B,当m∥β且n∥β时,若m∥n,则α,β可能平行也可能相交,故B不是α∥β的充分条件;对于选项C,当m∥β且n∥l2时,α,β可能平行也可能相交,故C不是α∥β的充分条件;对于选项D,当m∥l1,n∥l2时,由线面平行的判定定理可得l1∥α,l2∥α,又l1∩l2=M,由面面平行的判定定理可以得到α∥β,但α∥β时,m∥l1且n∥l2不一定成立,故D是α∥β的一个充分条件.故选D.方法技巧解决平行关系命题真假判断的一般思路1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.3.结合实物进行空间想象,比较判断.冲关针对训练(xx·山西长治二模)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,n∥β,则α∥β答案 C解析 对于A,墙角的三个墙面α,β,γ满足条伴,但γ与β相交,故A错误;m⊂α,n⊂β,且m,n平行于α,β的交线时符合B中条件,但α与β相交,故B错误;由m∥n,m⊥α可推出n⊥α,结合n⊥β可推出α∥β,故C正确;由D中的条件得α与β可能平行也可能相交,故D错误.所以选C.题型2 直线与平面平行的判定与性质角度1 直线与平面平行的判定与性质 (xx·保定期中)如图,P是平行四边形ABCD所在平面外一点,E是PD的中点.(1)求证:PB∥平面EAC;(2)若M是CD上异于C、D的点,连接PM交CE于G,连接BM交AC于H,求证:GH∥PB.利用中位线证线线平行从而证线面平行,利用线面平行证线线平行.证明 (1)连接BD,交AC于O,连接EO,则O是BD的中点.又E是PD的中点,∴PB∥EO.∵PB⊄平面EAC,EO⊂平面EAC,∴PB∥平面EAC.(2)由(1)知PB∥平面EAC,又平面PBM∩平面EAC=GH,∴根据线面平行的性质定理得GH∥PB.角度2 直线与平面平行的探索性问题 (xx·包河月考)在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=a,点E在PD上,且PE∶ED=2∶1,平面PAB∩平面PCD=l.(1)证明:l∥CD;(2)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.通过证明面面平行来证明线面平行.证明 (1)∵菱形ABCD,∴AB∥CD,又AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD,又AB⊂平面PAB,平面PAB∩平面PCD=l,∴AB∥l,∵AB∥CD,∴l∥CD.(2)当F是棱PC的中点时,BF∥平面AEC.证明如下,如图取PE的中点M,连接FM,由于M为PE中点,F为PC中点,所以FM∥CE.①由M为PE中点,得EM=PE=ED,知E是MD的中点,连接BM,BD,设BD∩AC=O,因为四边形ABCD是菱形,则O为BD的中点,由于E是MD的中点,O是BD的中点,所以BM∥OE.②由①FM∥CE②BM∥OE知,平面BFM∥平面AEC,又BF⊂平面BFM,所以BF∥平面AEC.方法技巧线面平行问题的证明策略1.证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形等证明两直线平行.注意说明已知的直线不在平面内.2.判断或证明线面平行的方法:①线面平行的定义(反证法);②线面平行的判定定理;③面面平行的性质定理.3.线面平行的探究性问题解决探究性问题一般先假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了使结论成立的充分条件,则存在;如果找不到使结论成立的充分条件(出现矛盾),则不存在,而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.冲关针对训练(xx·济南一模)如图,在多面体ABCDEF中,底面ABCD是菱形,AB=2,∠DAB=60°,EF∥AC,EF=.求证:FC∥平面BDE.证明 设AC∩BD=O,连接EO.∵底面ABCD是菱形,∠DAB=60°,∴OC=.∵EF∥AC,EF=OC=,∴EFCO为平行四边形,∴FC∥EO,∵FC⊄平面BDE,EO⊂平面BDE,∴FC∥平面BDE.题型3 平面与平面平行的判定与性质 如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明 (1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綊AB,∴A1G綊EB.∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EFA1∥平面BCHG.[条件探究] 在典例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求的值.解 连接A1B交AB1于O,连接OD1.由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O.所以BC1∥D1O,则==1.同理可证AD1∥DC1,则=,∴=1,即=1.方法技巧1.判定面面平行的方法(1)利用面面平行的判定定理,转化为证明线面平行.(2)证明两平面垂直于同一条直线.(3)证明两平面与第三个平面平行.2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒:利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.冲关针对训练(xx·西安模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,点O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.解 (1)证明:由题设知BB1綊DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,∴BD∥平面CD1B1.∵A1D1綊B1C1綊BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1.(2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD-A1B1D1的高.又∵AO=AC=1,AA1=,∴A1O==1.又∵S△ABD=××=1,。












