
待定系数法求二次函数的解析式—知识讲解(基础).doc
4页待定系数法求二次函数的解析式—知识讲解(基础) 【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的. 【要点梳理】要点一、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 : (1)一般式:(a,b,c为常数,a≠0); (2)顶点式:(a,h,k为常数,a≠0); (3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0; 第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为;③当已知抛物线与x轴的两个交点(x1,0),(x2,0)时,可设函数的解析式为.【典型例题】类型一、用待定系数法求二次函数解析式1.(2014秋•岳池县期末)已知二次函数图象过点O(0,0)、A(1,3)、B(﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax2+bx+c,把O(0,0)、A(1,3)、B(﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x2+x;∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax2+bx+c (a≠0).举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID号: 356565 关联的位置名称(播放点名称):例1】【变式】已知:抛物线经过A(0,),B(1,),C(,)三点,求它的顶点坐标及对称轴.【答案】设(a≠0),据题意列,解得,所得函数为对称轴方程:,顶点.2.(2015•巴中模拟)已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M(1,﹣2),设此二次函数的解析式为y=a(x﹣1)2﹣2,把点(2,3)代入解析式,得:a﹣2=3,即a=5,∴此函数的解析式为y=5(x﹣1)2﹣2.【总结升华】本题已知顶点,可设顶点式.举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID号: 356565 关联的位置名称(播放点名称):例2】【变式】在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,. ∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有 解得∴ 抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴ .∴ 抛抛物物解析式为.解法三:设二次函数解析式为(a≠0).则有,将点(3,0),(0,3)代入得 解得∴ 二次函数解析式为,即.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,一定要根据已知条件的特点,灵活选择不同形式的解析式求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C. (1)求二次函数解析式; (2)求△ABC的面积.【答案与解析】(1)设抛物线解析式为(a≠0),将(3,5)代入得,∴ .∴ . 即.(2)由(1)知C(0,8),∴ .【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.4。
