好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中数学选修4-5知识点(最全版).doc

13页
  • 卖家[上传人]:大米
  • 文档编号:555254345
  • 上传时间:2024-02-09
  • 文档格式:DOC
  • 文档大小:166KB
  • / 13 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 苏教版高中数学选修4-5知识点1.不等式的基本性质 1.实数大小的比较(1)数轴上的点与实数之间具有一一对应关系.(2)设a、b是两个实数,它们在数轴上所对应的点分别是A、B.当点A在点B的左边时,ab.(3)两个实数的大小与这两个实数差的符号的关系(不等式的意义)(4)两个实数比较大小的步骤①作差;②变形;③判断差的符号;④结论.2.不等关系与不等式(1)不等号有≠,>,<,≥,≤共5个.(2)相等关系和不等关系任意给定两个实数,它们之间要么相等,要么不相等.现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的.(3)不等式的定义:用不等号连接起来的式子叫做不等式.(4)不等关系的表示:用不等式或不等式组表示不等关系.3.不等式的基本性质(1)对称性:a>b?bb,b>c?a>c;(3)可加性:a>b,c∈R?a+c>b+c;(4)加法法则:a>b,c>d?a+c>b+d;(5)可乘性:a>b,c>0?ac>bc;a>b,c<0?acb>0,c>d>0?ac>bd;(7)乘方法则:a>b>0,n∈N且n≥2?an>bn;(8)开方法则:a>b>0,n∈N且n≥2?>.(9)倒数法则,即a>b>0?<.2.基本不等式1.重要不等式定理1:如果a,b∈R,那么a2+b2≥2ab,当且仅当a=b时,等号成立.2.基本不等式(1)定理2:如果a,b>0,那么 ( ≥),当且仅当a=b时,等号成立.(2)定理2的应用:对两个正实数x,y,①如果它们的和S是定值,则当且仅当x=y时,它们的积P取得最大值,最大值为.②如果它们的积P是定值,则当且仅当x=y时,它们的和S取得最小值,最小值为2.3.基本不等式≤的几何解释如图,AB是⊙O的直径,C是AB上任意一点,DE是过C点垂直AB的弦.若AC=a,BC=b,则AB=a+b,⊙O的半径R=,Rt△ACD∽Rt△DCB,CD2=AC·BC=ab,CD=,CD≤R?≤,当且仅当C点与O点重合时,CD=R=,即=.4.几个常用的重要不等式(1)如果a∈R,那么a2≥0,当且仅当a=0时取等号;(2)如果a,b>0,那么ab≤,当且仅当a=b时等号成立.(3)如果a>0,那么a+≥2,当且仅当a=1时等号成立.(4)如果ab>0,那么+≥2,当且仅当a=b时等号成立.3.三个正数的算术-几何平均不等式1.如果a、b、c∈R+,那么a3+b3+c3≥3abc,当且仅当a=b=c时,等号成立.2.(定理3)如果a、b、c∈R+,那么 (≥),当且仅当a=b=c时,等号成立.即三个正数的算术平均不小于它们的几何平均.3.如果a1,a2,…,an∈R+,那么≥,当且仅当a1=a2=…=an时,等号成立.即对于n个正数a1,a2,…,an,它们的算术平均不小于它们的几何平均.二 绝对值不等式1.绝对值三角不等式1.绝对值及其几何意义(1)绝对值定义:|a|=(2)绝对值几何意义:实数a的绝对值|a|表示数轴上坐标为a的点A到原点O的距离|OA|.(3)数轴上两点间的距离公式:设数轴上任意两点A,B分别对应实数x1,x2,则|AB|=|x1-x2|.2.绝对值三角不等式(1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.推论1:如果a,b是实数,那么|a|-|b|≤|a-b|≤|a|+|b|.推论2:如果a,b是实数,那么|a|-|b|≤|a+b|≤|a|+|b|.(2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法1.|x|a型不等式的解法设a>0,则(1)|x|a?x<-a或x>a;(4)|x|≥a?x≤-a或x≥a.2.|ax+b|≤c(c>0)与|ax+b|≥c(c>0)型不等式的解法(1)|ax+b|≤c?-c≤ax+b≤c;(2)|ax+b|≥c?ax+b≤-c或ax+b≥c.3.|x-a|+|x-b|≤c与|x-a|+|x-b|≥c型不等式的解法(1)利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释.(2)以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值号内多项式的正、负号,进而去掉绝对值号.(3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想.正确求出函数的零点并画出函数图象(有时需要考察函数的增减性)是关键.注:绝对值的几何意义(1)|x|的几何意义是数轴上点x与原点O的距离;(2)|x-a|+|x-b|的几何意义是数轴上点x到点a和点b的距离之和;(3)|x-a|-|x-b|的几何意义是数轴上点x到点a和点b的距离之差.2.绝对值不等式的几何意义(1)|x|≤a(a>0)的几何意义是以点a和-a为端点的线段,|x|≤a的解集是[-a,a].(2)|x|>a(a>0)的几何意义是数轴除去以点a和-a为端点的线段后剩下的两条射线,|x|>a的解集是(-∞,-a)∪(a,+∞).3.解含绝对值不等式的关键是去掉绝对值变形为不含绝对值的不等式(组)求解.例题:例如:分类讨论法:即通过合理分类去绝对值后再求解。

      例1: 解不等式分析:由,,得和和把实数集合分成三个区间,即,,,按这三个区间可去绝对值,故可按这三个区间讨论解:当x<-2时,得, 解得: 当-2≤x≤1时,得, 解得:当时,得 , 解得:综上,原不等式的解集为例2:解不等式|2x-4|-|3x+9|<1.解:①当x>2时,原不等式可化为解得x>2.②当-3≤x≤2时,原不等式可化为解得--}.第二讲 证明不等式的基本方法 一 比较法比较法主要有1.作差比较法 2.作商比较法1.作差比较法(简称比差法)(1)作差比较法的证明依据是:a>b?a-b>0;a=b?a-b=0;a0时,>1?a>b;=1?a=b;<1?ab时,一定要注意b>0这个前提条件.若b<0,<1?a>b,=1?a=b,>1?a;<(n∈N且n≥2);>(n∈N*);。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.