
高中数学必修系列:11.1随机事件的概率.docx
18页高中数学必修系列:11.1随机事件的概率 高中数学必修系列:11.1随机事件的概率由我整理,希望给你工作、学习、生活带来方便 【鼎尖教案】人教版高中数学必修系列:11.1随机事件的概率 (备课资料) 一、参考例题 [例1]先后抛掷3枚均匀的一分,二分,五分硬币.(1)一共可能出现多少种不同的结果? (2)出现“2枚正面,1枚反面”的结果有多少种? (3)出现“2枚正面,1枚反面”的概率是多少? 分析:(1)由于对先后抛掷每枚硬币而言,都有出现正面和反面的两种情况,所以共可能出现的结果有2×2×2=8种.(2)出现“2枚正面,1枚反面”的情况可从(1)中8种情况列出.(3)因为每枚硬币是均匀的,所以(1)中的每种结果的出现都是等可能性的.解:(1)∵抛掷一分硬币时,有出现正面和反面2种情况, 抛掷二分硬币时,有出现正面和反面2种情况, 抛掷五分硬币时,有出现正面和反面2种情况, ∴共可能出现的结果有2×2×2=8种.故一分、二分、五分的顺序可能出现的结果为: (正,正,正),(正,正,反), (正,反,正),(正,反,反), (反,正,正),(反,正,反), (反,反,正),(反,反,反).(2)出现“2枚正面,1枚反面”的结果有3个,即(正,正,反),(正,反,正),(反,正,正).(3)∵每种结果出现的可能性都相等, ∴事件A“2枚正面,1枚反面”的概率为P(A)= 3.8[例2]甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率.分析:这里从甲、乙、丙、丁中选3名代表就是从4个不同元素中选3个元素的一个组合,也就是一个基本事件.解:所有的基本事件是:甲乙丙,甲乙丁,甲丙丁,乙丙丁选为代表.∵每种选为代表的结果都是等可能性的,甲被选上的事件个数m=3, ∴甲被选上的概率为 3.4[例3]袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球.(1)共有多少种不同结果? (2)取出的3球中有2个白球,1个黑球的结果有几个? (3)取出的3球中至少有2个白球的结果有几个? (4)计算第(2)、(3)小题表示的事件的概率.分析:(1)设从4个白球,5个黑球中,任取3个的所有结果组成的集合为I,所求结果种数n就是I中元素的个数.(2)设事件A:取出的3球,2个是白球,1个是黑球,所以事件A中的结果组成的集合是I的子集.(3)设事件B:取出的3球至少有2个白球,所以B的结果有两类:一类是2个白球,1个黑球;另一类是3个球全白.(4)由于球的大小相同,故任意3个球被取到的可能性都相等.故由P(A)= card(A),P(B)= card(I)card(B),可求事件A、B发生的概率.card(I)解:(1)设从4个白球,5个黑球中任取3个的所有结果组成的集合为I, ∴card(I)=C39=84.∴共有84个不同结果.(2)设事件A:“取出3球中有2个白球,1个黑球”的所有结果组成的集合为A, ∴card(A)=C4·C15=30.∴共有30种不同的结果.(3)设事件B:“取出3球中至少有2个白球”的所有结果组成的集合为B, ∴card(B)=C4+C4·C15=34.∴共有34种不同的结果.(4)∵从4个白球,5个黑球中,任取3个球的所有结果的出现可能性都相同, ∴事件A发生的概率为3223053417==,事件B发生的概率为.841484 42二、参考练习 1.选择题 (1)如果一次试验中所有可能出现的结果有n个,而且所有结果出现的可能性相等,那么每一个基本事件的概率 A.都是1 B.都是 C.都是 D.不一定 答案:B (2)抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1,2,3,4,5,6),它落地时向上的数都是3的概率是 1 31C.2A. B.1 D.1 6答案:D (3)把十张卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张,则所抽取的卡片上数字不小于3的概率是 1 105C.10A.答案:D 3 107 D. B.(4)从6名同学中,选出4人参加数学竞赛,其中甲被选中的概率为 1 33C. 5A. 1 22 D. 3 B.答案:D (5)甲袋内装有大小相等的8个红球和4个白球,乙袋内装有大小相等的9个红球和3个白球,从2个袋内各摸出一个球,那么 5等于 12A.2个球都是白球的概率 B.2个球中恰好有一个是白球的概率 C.2个球都不是白球的概率 D.2个球都是白球的概率 答案:B (6)某小组有成员3人,每人在一个星期(7天)中参加一天劳动,如果劳动日可任意安排,则3人在不同的3天参加劳动的概率为 3730C. 49A. 3 351 D. 70 B.答案:C 2.填空题 (1)随机事件A的概率P(A)应满足________.答案:0≤P(A)≤1 (2)一个口袋内装有大小相同标号不同的2个白球,2个黑球,从中任取一个球,共有________种等可能的结果.答案:4 (3)在50瓶饮料中,有3瓶已经过期,从中任取一瓶,取得已过期的饮料的概率是________.答案:3 50(4)一年以365天计,甲、乙、丙三人中恰有两人在同天过生日的概率是________.2C3´3641092=解析:P(A)=.22365365答案:1092 2365(5)有6间客房准备安排3名旅游者居住,每人可以住进任一房间,且住进各房间的可能性相等,则事件A:“指定的3个房间各住1人”的概率P(A)=________;事件B:“6间房中恰有3间各住1人”的概率P(B)=________;事件C:“6间房中指定的一间住2人”的概率P(C)=________. A31解析:P(A)=33=; 6363C356×A3=P(B)=; 6392C3×55=P(C)=.3673答案:155 369733.有50张卡片(从1号到50号),从中任取一张,计算: (1)所取卡片的号数是偶数的情况有多少种? (2)所取卡片的号数是偶数的概率是多少? 解:(1)所取卡片的号数是偶数的情况有25种.(2)所取卡片的号数是偶数的概率为P= 251=.502●备课资料 一、参考例题 [例1]一栋楼房有六个单元,李明和王强住在此楼内,试求他们住在此楼的同一单元的概率.分析:因为李明住在此楼的情况有6种,王强住在此楼的情况有6种,所以他们住在此楼的住法结果有6×6=36个,且每种结果的出现的可能性相等.而事件A:“李明和王强住在同一单元”含有6个结果.解:∵李明住在这栋楼的情况有6种,王强住在这栋楼的情况有6种, ∴他们同住在这栋楼的情况共有6×6=36种.由于每种情况的出现的可能性都相等, 设事件A:“李明和王强住在此楼的同一单元内”,而事件A所含的结果有6种, ∴P(A)=61=.3661.6∴李明和王强住在此楼的同一单元的概率为评述:也可用“捆绑法”,将李明和王强视为1人,则住在此楼的情况有6种.[例2]在一次口试中,要从10道题中随机选出3道题进行回答,答对了其中2道题就获得及格.某考生会回答10道题中的8道,那么这名考生获得及格的概率是多少? 3分析:因为从10道题中随机选出3道题,共有C10种可能的结果,而每种结果出现的可能性都相等,故本题属于求等可能性事件的概率问题.解:∵从10题中随机选出3题,共有等可能性的结果C10个.设事件A:“这名考生获得及格”,则事件A含的结果有两类,一类是选出的3道正是他能回答的3题,共有C8种选法;另一类是选出的3题中有2题会答,一题不会回答,共有11232·C2种选法,所以事件A包含的结果有C8+C8·C2个.C8321C8+C8C214∴P(A)==.3C101533∴这名考生获得及格的概率为 14.15[例3]7名同学站成一排,计算: (1)甲不站正中间的概率; (2)甲、乙两人正好相邻的概率; (3)甲、乙两人不相邻的概率.分析:因为7人站成一排,共有A77种不同的站法,这些结果出现的可能性都相等.解:∵7人站成一排,共有A77种等可能性的结果, 设事件A:“甲不站在正中间”; 事件B:“甲、乙两人正好相邻”; 事件C:“甲、乙两人正好不相邻”; 事件A包含的结果有6A66个; 事件B包含的结果有A66A2个; 2事件C包含的结果有A55·A6个. 26A66(1)甲不站在正中间的概率P(A)=76=. A773A626A6(2)甲、乙两人相邻的概率P(B)=.=7A773A555A6(3)甲、乙两人不相邻的概率P(C)=.=A777[例4]从1,2,3,„,9这九个数字中不重复地随机取3个组成三位数,求此数大于456的概率.分析:因为从1,2,3,„,9这九个数字中组成无重复数字的三位数共有A39=504个,且每个结果的出现的可能性都相等,故本题属求等可能性事件的概率问题.由于比456大的 2三位数有三类:(1)百位数大于4,有A15·A8=280个;(2)百位数为4,十位数大于5,有1·A1A47=28个;(3)百位数为4,十位数为5,个位数大于6有2个,因此,事件“无重复数字且比456大的三位数”包含的结果有280+28+3=311个.解:∵由数字1,2,3,„,9九个数字组成无重复数字的三位数共有A39=504个,而每种结果的出现的可能性都相等.其中,事件A:“比456大的三位数”包含的结果有311个, ∴事件A的概率P(A)= 311.504∴所求的概率为311.5041,求该班男生、女生的人数.2[例5]某班有学生36人,现从中选出2人去完成一项任务,设每人当选的可能性都相等,若选出的2人性别相同的概率是分析:由于每人当选的可能性都相等,且从全班36人中选出2人去完成一项任务的选2法有C36种,故这些当选的所有结果出现的可能性都相等.解:设该班男生有n人,则女生(36-n)人.(n∈N*,n≤36) 2∵从全班的36人中,选出2人,共有C36种不同的结果,每个结果出现的可能性都相2等.其中,事件A:“选出的2人性别相同”含有的结果有(C2n+C36-n)个, 2C21n+C36-n∴P(A)=.=2C362∴n2-36n+315=0.∴n=15或n=21.∴该班有男生15人,女生21人,或男生21人,女生15人.评述:深刻理解等可能性事件概率的定义,能够正确运用排列、组合的知识对等可能性事件进行分析、计算. 二、参考练习 1.选择题 (1)十个人站成一排,其中甲、乙、丙三人彼此不相邻的概率为 1 158C.15A. 7 457 D. 15 B.答案:D (2)将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是 1 23C.4A. 1 41 D. 3 B.答案:A (3)从数字0,1,2,3,4,5这六个数字中任取三个组成没有重复数字的三位数,则这个三位数是奇数的概率等于 3 2516C.25A. 12 2524 D. 25 B.答案:B (4)盒中有101个铁钉,其中有90个是合格的,10个是不合格的,从中任意抽取10个,其中没有一个不合格铁钉的概率为 A.0.9 B.1 9C.0.1 C10190D.10 C。












