
计量经济学实验五-多重共线性的检验与修正.doc
4页多重共线性的检验与修正【实验目的】掌握多重共线性的检验与修正方法并能运用Eviews软件进行实现【实验要求】能根据OLS的估计结果判断是否存在多重共线性,熟悉逐步回归法修正模型的基本操作步骤,读懂各项上机榆出结果的含义并能进行分析【实验软件】 Eviews 软件【实验内容】根据给定的案例数据按实验要求进行操作【实验方案与进度】 实验:设某地区蔬菜销售量Y与人口(X1)、价格(X2)、粮食价格(X3)、收入(X4)、副食价格(X5)和储蓄(X6)等资料如下:obsYX1X2X3X4X5X619887.450 425.5 8.12 17.5 17.80 185.85 21.68 19897.605 422.3 8.32 22.9 19.51 185.35 21.08 19907.855 418.0 8.36 23.7 18.93 185.10 21.03 19917.805 419.2 8.20 21.1 19.05 184.80 20.73 19926.900 384.2 8.86 23.3 19.57 184.60 21.93 19937.470 372.5 7.70 19.1 19.95 184.25 22.49 19947.385 372.9 8.46 18.2 20.89 181.35 23.26 19957.225 380.8 8.88 22.2 23.27 179.30 24.39 19968.130 401.7 9.00 27.6 26.06 178.10 25.04 19978.720 406.5 8.80 28.8 28.55 176.25 25.53 19989.145 410.5 9.26 27.8 30.12 174.35 26.64 199910.105 447.0 8.62 24.4 32.78 174.25 27.53 200010.170 452.8 8.44 24.1 32.21 179.35 28.12 200110.540 467.1 9.66 27.8 33.57 173.85 31.35 200210.635 495.2 9.68 19.5 34.86 179.50 34.58 200310.455 500.0 11.32 25.4 36.60 166.85 41.78 200410.995 525.0 12.30 28.4 40.35 158.25 42.85 200512.380 550.0 12.88 35.4 45.00 155.00 46.75 200611.770 561.0 14.02 34.8 49.87 141.05 49.21 要求:(1)将Y关于其他变量线性回归Dependent Variable: YMethod: Least SquaresDate: 06/03/13 Time: 16:48Sample: 1988 2006Included observations: 19VariableCoefficientStd. Errort-StatisticProb. C-1.5302606.006901-0.2547500.8032X10.0146490.0029235.0121070.0003X2-0.7027750.254521-2.7611690.0172X30.0603210.0275752.1875450.0492X40.1198250.0369913.2392900.0071X50.0180810.0260220.6948160.5004X60.0922660.0542651.7003020.1148R-squared0.986169 Mean dependent var9.091579Adjusted R-squared0.979254 S.D. dependent var1.717935S.E. of regression0.247442 Akaike info criterion0.322027Sum squared resid0.734730 Schwarz criterion0.669979Log likelihood3.940740 F-statistic142.6067Durbin-Watson stat2.292164 Prob(F-statistic)0.000000 (2)经济意义检验:与预期符号相符(3)方程线性显著性检验由(1)表中的数据可知F统计量的值为142.6067,查表得=3,显然142.6067>=3,说明方程具有线性显著性。
4)解释变量的变量显著性检验 在0.05的显著水平条件下,查表得=2.179,由(1)表中数据可知,、的t检验值明显小于临界值,则接受原假设:,说明、对Y的影响不显著,对方程没有意义5)用直观判断法判断模型是否有多重共线性?由(1)表中数据可知,该模型判定系数=0.986169,调整的判定系数=0.979254,数值都接近于1,解释变量对被解释变量的解释程度很高,而F统计值为142.6067,明显显著但是如果给定0.05的显著性水平,=2.179,显然与系数不能通过t检验,的与预期符号不符,这表明很可能存在严重的多重共线性6)对解释变量之间的相关系数进行检查,是否可怀疑自变量之间存在严重的多重共线性X1X2X3X4X5X6X110.8849650.6545300.898947-0.8416170.929992X20.88496510.7827340.897952-0.9627260.963175X30.6545300.78273410.783237-0.8288400.716681X40.8989470.8979520.7832371-0.9278430.953896X5-0.841617-0.962726-0.82884-0.9278431-0.936253X60.9299920.9631750.7166810.953896-0.9362531由相关系数矩阵可以看出,除与和与的相关系数较低,(但也达0.6以上)其他各解释变量之间的相关系数都很高,证实确实存在较严重的多重共线性。
7)利用逐步回归法拟合一个较为理想的回归模型分别作Y对,,,,,的一元回归,整理数据结果如下:变量参数估计值0.0271530.7801630.2425010.171860-0.1176250.168005t统计量10.235275.6792424.13597113.90115-6.0119288.8274990.8521690.6345460.4722380.9143840.6612930.810376以为解释变量的一元线性回归方程拟合最好,修正的判定系数值最大,以这个模型为基础,分别加入,,,,进行回归分析整理数据结果如下:t0.0100270.1166620.9343632.4848254.721019t-0.2571300.2147910.924533-1.8127478.143916t-0.0378230.1873690.914339-0.9954989.420090t0.2494030.0664960.9430489.2251373.091285t0.187951-0.0174500.9099314.448634-0.399277加入的二元方程=0.943048,改进最大,且、的t统计量都大于临界值=2.179,检验显著,保留,结果如下表:变量t统计量0.0105850.1943890.0692890.9692983.8314117.9346194.382464t统计量0.1155490.2486780.0824180.9405100.5632798.9901972.301523t统计量0.0053990.2491140.0681460.9393440.1516028.9079912.756073t统计量0.2256920.0778300.0400460.9432396.3531063.2231901.026534加入的二元方程=0.969298,改进最大,而且、、的t统计量都大于临界值=2.179,检验显著,保留结果如下表:变量t统计量0.014468-0.3461750.1763810.0226120.9748744.638504-2.0806657.4132450.849895t统计量0.0112930.0287540.1891760.0782680.9697864.0141091.1146037.6437584.438927t统计量0.0128680.2060420.058650-0.0397170.9698103.7685737.7964913.199514-1.120068经比较,加入的二元方程=0.974874,改进最大,但他的t统计量不是显著的,而加入,,不但没有改进,而且他们的t统计量也不是显著的,说明,,引起严重的多重共线性。












