好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

COMSOL使用技巧.doc

19页
  • 卖家[上传人]:工****
  • 文档编号:444934224
  • 上传时间:2023-04-21
  • 文档格式:DOC
  • 文档大小:5.91MB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • wordSOL Multiphysics使用技巧〔旧版通用〕一、 全局约束/全局定义对于多物理仿真,添加全局约束是SOL非常有用的功能之一例如,对于一个涉与传热的仿真,希望能够调整热源Q_0的大小,从而使得某一位置处的温度T_probe恒定在指定值T_max,我们可以直接将这个全局约束添加进来即可有些情况下,全局约束可能包含有对时间的微分项,也就是常说的常微分方程〔ODE〕,SOL同样也支持自定义ODE作为全局约束例如,在一个管道内流体+物质扩散问题的仿真中,利用PID算法控制管道入口的流速u_in_ctrl,从而使得某一位置处的浓度conc恒定在指定值c_set〔根本模块模型库 > Multidisciplinary > PID control〕需要添加的PID算法约束如下式:要添加上述约束,除变上限积分项外,另外两项都可以很容易的在边界条件中的“入口流速〞设置中直接定义因此,这个变上限积分需要转化成一个ODE,作为全局约束参加令,方程两边同对时间t求导,得到在SOL中,变量u对时间的导数,用ut表示因此变量int的时间导数即为intt利用SOL的“ODE设定〞,我们可以很容易的将intt-(conc-c_set)=0这个ODE全局约束添参加模型之中。

      二、 积分耦合变量SOL的语法中,变量u对空间的微分,分别默认为用ut,ux,uy,uz等来表示,这为仿真提供了极大的便利那么对变量u的空间积分呢?SOL提供了积分耦合变量来实现这一功能积分耦合变量分为四种:点(point)积分耦合变量、边(edge)积分耦合变量、边界(boundary)积分耦合变量、求解域(subdomain)积分耦合变量根据模型的维度,会有相应积分耦合变量用户还可以指定得到结果后的作用域,例如全局,或指定某些点、边、边界或求解域从而可以将对积分耦合变量结果的访问限制在指定的对象上求解域积分耦合变量,就是对指定变量或表达式在指定的某个或者某些求解域上做积分,积分的结果赋给自定义的这个积分耦合变量对于三维仿真,这个积分是体积分;对于二维如此是面积分最典型的应用当属对数值1进展积分,可以得到体积或面积边界积分耦合变量,就是对指定变量或表示在指定的某个或者某些边界上做积分,积分的结果付给自定义的这个积分耦合变量对于三维仿真,这个积分是面积分;对于二维如此是线积分对1积分可以得到面积或边长边积分耦合变量,就是对指定变量或表达式在指定的某个或者某些边上做积分,积分的结果付给自定义的这个积分耦合变量。

      仅存在于三维仿真中,这个积分是线积分对1积分得到边长点积分耦合变量,就是对指定变量或表达式在指定的某个或者某些点上给出它的值它的最主要用法是将某个点上的结果映射到指定的对象上在上面PID控制的例子中,指定位置处的浓度conc就是一个点积分耦合变量,用来提取点PT1处的浓度值同时,浓度c的时间变化率ct在PT1点的取值,也可以用同样的方法提取出来,付给变量ctime积分耦合变量除了用于添加约束,也常常用于后处理SOL允许用户将任意表达式在任意求解域或者边界上的积分定义为一个变量,然后直接在后处理中对该自定义的积分耦合变量做数据可视化操作例如,在二维扩散问题的仿真中,为了观测流出边界上总的流出的物质量,可以在出口边界利用边界耦合积分变量,然后可以直接得到数据曲线〔根本模块模型库 > Chemical engineering > absorption〕三、 时间积分现在我们已经可以在SOL中方便的定义任意一个变量u与其表达式的时间微分〔ut〕、空间微分〔ux,uy,uz〕、空间积分〔积分耦合变量〕那么对于时间的积分如何处理呢?SOL当然也提供了这项功能对于时间的积分项的处理,SOL也是通过ODE的设定来实现的。

      例如前例中,我们已经可以利用一个边界积分耦合变量来描述某个时刻流出的物质量现在我们进一步,需要知道一段时间内总的物质流出量Totmass: ==> 将方程两边同对时间t求导后就变成了一个ODE方程,类似于定义一个全局约束那样,我们使用SOL的“ODE设定〞功能便可以定义这个新的变量Tot_mass采用ODE进展时间积分,仅仅只能对标量进展积分,如果是想对求解域内的某个值进展积分〔通常具有维度〕,如此需要采用耦合一个PDE应用模式的方法,通过修改PDE方程,使其满足对时间的常微分方程形式,然后在求解中可以得到对时间的积分结果四、 停止条件在进展稳态求解时,SOL迭代求解当然是以收敛条件满足作为计算的停止条件但是在瞬态分析的情况下,计算何时停止就可由用户自行选择了与其他仿真软件类似,SOL默认的瞬态分析停止条件就是遍历用户使定的时间X围后,计算停止但是除此之外,SOL还可以提供一种更为灵活而且强大的功能,就是允许用户选择让软件自动检测计算结果中的某一变量或表达式,当该变量或表达式满足一定条件时,计算停止例如上例中,我们可以让流出物质的总量达到指定值时,计算自动停止布尔表达式SOL的停止条件使用的是布尔表达式。

      布尔表达式运算的结果大于零,如此表示有效,此时停止条件满足,计算停止;当布尔运算结果小于或者等于零,如此表示无效,停止条件不满足,计算继续进展需要注意的是,这里的表达式,通常是对某个标量进展求解的结果五、 非线性特征值问题求解方程的特征值是仿真中经常碰到的一类问题问题线性度比拟好的时候,方程的系数与方程的解变量u不存在函数关系,这样的方程很容易解;反过来,方程特征值也很容易求但是有时候我们会碰到非线性比拟强的问题,方程的系数本身就是解变量u的函数对于正问题,SOL很容易“求解域设定〞中,定义方程的某些系数是解变量的函数,然后利用SOL提供的非线性求解器完成求解但是对于非线性很强的逆问题又该如何定义呢?这里有一个很好用的技巧,就是使用全局约束对特征值先进展一下归一化,在这里定义特征值与解变量相关例如PDE方程,其中l即为特征值〔如下图中的Lambda〕我们可以先添加全局约束,定义E=1,而E其实是一个积分耦合变量,对应于解变量u2在求解域上的积分通过这样操作,我们就把Lambda和解变量u建立的联系,然后使用SOL提供的非线性求解器完成求解六、 利用耦合变量对结果进展扫掠SOL支持多维度的耦合计算仿真,这是SOL独有的强大功能之一。

      SOL允许用户对一个物理问题做多维度的建模分析也就是说,同一个仿真过程里可以包含多个几何结构,这些几何结构通常都是不同维度的,最常见的是包含一个三维的完整几何,还有一个或者多个二维的截面,再加一个或多个一维的线在不同的几何上,用户都可以建立物理方程并同时求解,这些几何之间是如何传递参数的呢,就是通过SOL的耦合变量SOL提供两种耦合两边实现这个功能:拉伸耦合变量、投影耦合变量拉伸耦合变量的功能是把一个几何中的变量或者表达式,按照预定义或者用户自定义的坐标变换,直接传递到另一个几何中例如一个建立在二维轴对称情况下的传热仿真,灯泡经过计算后已经获得的其温度场T的分布此时的变量T仅存在与二维轴对称这个几何中〔Geom1〕现在我们在同一模型下可以建立一个新的几何Geom2,这个三维的几何就是由二维轴对称的几何直接绕对称轴旋转而来在模型树里可以清楚看到,在Geom2下面没有任何的方程,当然也就没有什么变量我们可以利用拉伸耦合变量,将Geom1中的变量T传递过来,然后在三维的Geom2中看这个结果投影耦合变量是积分耦合变量与拉伸耦合变量的合体它的用法与拉伸耦合变量非常类似,只不过在跨几何传递参数的时候,拉伸耦合变量传递的就是变量或者表达式本身,而投影耦合变量传递的是变量或者表达式的积分。

      七、 在非线性设置中调整瞬态求解器当求解瞬态非线性问题时,为了提高收敛性和求解器的效率,用户可以手动调整求解器的一些参数,例如非线性求解器中的迭代步数、公差因子、阻尼衰减参数、Jacobian修正方法等通常情况下,如果在迭代步数X围内,收敛性较慢,未能在适当的迭代次数后得到结果,可以将迭代步数改大但是这样做,有时候会产生较大的计算量当非线性较强时,可以将公差因子调小,这样做可以控制迭代时的步长,较小的步长受非线性的影响较小,可能会快速得到结果,但也有可能会产生较大迭代次数,增加计算量阻尼衰减参数等,可以根据实际情况进展调整,用户可以指定初始值、最小步长、以与最大步长如果非线性很强,如此应该将最小步长改小,反之可以将最大步长调大Jacobian修正方法,也可以根据需要来修改,例如缺省是采用最小值方法,用户可以修改成每个迭代都要修改,或每个时间长只进展一次修改修改次数越多,意味着非线性的影响越小,同样也意味着计算量的增加八、 求解时绘图边求解边绘图是SOL最强大的后处理工具之一,它允许用户在求解的过程中,实时观测到某个变量或者表达式的结果图例如在求解相变析出的一类问题,使用边处理边绘图可以实时观察到相结构的演变。

      在SOL中要使用这个功能非常简单,只需要在“求解器设定〞勾选“求解时作图〞的复选框就可以了九、 绘制探测图在求解的同时,SOL还以做一种图,即探测图这个功能允许用户在任意的位置放置观测点,随着求解的进展实时的掌握观测点上的某些变量或者表达式的取值变化十、 保存探测图数据SOL也允许用户将这种实时的探测图加以保存,或者将数据导出也可以十一、 交互式网格剖分所有〔自由〕删除网格剖分选中的面撤消剖分增加网格尺寸+ 剖分选中的 (扫描)剖分剩下的 (自由)剖分选中的 (扫描)网格剖分是有限元仿真最重要的技术之一,好的网格可以有效小的提高计算的收敛性并减少计算时间SOL内建了极为强大的网格剖分工具,包括自由网格生成器、映射网格生成器、扫描网格生成器、边界层网格生成器四种网格生成方法,同时还提供网格复制、网格删除、网格撤销、网格拉伸和旋转、网格导入等等功能将这些工具联合使用,就是SOL的交互式网格剖分,用户可以根据需要,完全自由控制网格的形状和分布十二、 CAD导入SOL除了内建有强大的CAD工具之外,还提供了与其他CAD软件的接口,用户可以方便的直接导入其他CAD软件创建好的模型SOL的CAD导入功能除了能够正确识别其他CAD文件之外,更重要的是提供了一些修复的工具。

      就一般的CAD设计过程来说,零件在设计的后期往往会参加一些圆角、倒角之类的特征,另外零件上本身还有一些狭小的曲面,这些特征对于SOL仿真的物理结构并不重要,但是却会带来许多不必要的网格,SOL提供了CAD修复的功能来自动移除这些圆角、倒角、狭小曲面另外,导入的CAD模型有可能存在组件未对齐、本该连接在一起的面没有连上等等,这些都会造生SOL无法有效的识别物理求解域,因此SOL提供的CAD修复工具可以修补缺口,消除自相交或者不连续移除C4将C3扩展到C1C4C3C1C2C3C1C2移除C4修改C1到C3C4C3C1C2C3C1C2将C4延长到C3C4C3C1C2C3C1C2C4移除C4修改C1和C3C4C3C1C2C3C1C2移除C5, C6修改C1或C4C4C3C1C2C3C1C2C5C6。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.