
台安县民族中学2018-2019学年上学期高二数学12月月考试题含解析.doc
17页精选高中模拟试卷台安县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f(x)=3cos(2x﹣),则下列结论正确的是( )A.导函数为B.函数f(x)的图象关于直线对称C.函数f(x)在区间(﹣,)上是增函数D.函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到2. 已知幂函数y=f(x)的图象过点(,),则f(2)的值为( )A. B.﹣ C.2 D.﹣23. 已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有( )A.2对 B.3对 C.4对 D.5对4. 设是偶函数,且在上是增函数,又,则使的的取值范围是( )A.或 B.或 C. D.或5. 设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( ) A.1 B. C. D. 6. “”是“A=30°”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也必要条件7. 以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是( ) A.相交 B.相切 C.相离 D.不能确定8. 数列{an}的首项a1=1,an+1=an+2n,则a5=( )A. B.20 C.21 D.319. 下列函数中,定义域是且为增函数的是( )A. B. C. D.10.已知数列{an}满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为( )A.89 B.76 C.77 D.35 11.若偶函数y=f(x),x∈R,满足f(x+2)=﹣f(x),且x∈[0,2]时,f(x)=1﹣x,则方程f(x)=log8|x|在[﹣10,10]内的根的个数为( )A.12 B.10 C.9 D.812.下列关系正确的是( ) A.1∉{0,1} B.1∈{0,1} C.1⊆{0,1} D.{1}∈{0,1} 二、填空题13.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,则AD的长为 . 14.抛物线y2=﹣8x上到焦点距离等于6的点的坐标是 . 15.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 . 16.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k= . 17.记等比数列{an}的前n项积为Πn,若a4•a5=2,则Π8= .18.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了消除的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.三、解答题19.已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等差数列;列a10,a11,…a20,是公差为d的等差数列;a20,a21,…a30,是公差为d2的等差数列(d≠0). (1)若a20=40,求d; (2)试写出a30关于d的关系式,并求a30的取值范围; (3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分)如图, 矩形的两条对角线相交于点,边所在直线的方程为点在边所在直线上.(1)求边所在直线的方程;(2)求矩形外接圆的方程. 21.已知双曲线C:与点P(1,2). (1)求过点P(1,2)且与曲线C只有一个交点的直线方程; (2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由. 22.(本小题满分12分)如图长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.23.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.24.若函数f(x)=sinωxcosωx+sin2ωx﹣(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m的值;(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和. 台安县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目. 2. 【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A. 3. 【答案】D【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,∴面PDA⊥面ABCD,面PDC⊥面ABCD,又∵四边形ABCD为矩形∴BC⊥CD,CD⊥AD∵PD⊥矩形ABCD所在的平面∴PD⊥BC,PD⊥CD∵PD∩AD=D,PD∩CD=D∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD综上相互垂直的平面有5对故答案选D 4. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的解集.15. 【答案】D 【解析】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得 = 当时,y′<0,函数在上为单调减函数, 当时,y′>0,函数在上为单调增函数 所以当时,所设函数的最小值为 所求t的值为 故选D 【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值. 6. 【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题. 7. 【答案】C 【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D 连接AC、BD,设AB的中点为M,作MN⊥l于N 根据圆锥曲线的统一定义,可得 ==e,可得 ∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|, ∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|) ∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离 故选:C 【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题. 8. 【答案】C【解析】解:由an+1=an+2n,得an+1﹣an=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题. 9. 【答案】B 【解析】试题分析:对于A,为增函数,为减函数,故为减函数,对于B,,故为增函数,对于C,函数定义域为,不为,对于D,函数为偶函数,在上单调递减,在上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.10.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C. 11.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D. 12.【答案】B 【解析】解:由于1∈{0,1},{1}⊆{0,1}, 故选:B 【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键. 二、填空题13.【答案】 5 . 【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在。
