好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

人工智能生成内容(AIGC) 白皮书.docx

63页
  • 卖家[上传人]:I***
  • 文档编号:345658150
  • 上传时间:2023-02-28
  • 文档格式:DOCX
  • 文档大小:823.98KB
  • 文本预览
  • 下载提示
  • 常见问题
    • 人工智能生成内容(AIGC) 白皮书前 言习近平总书记曾指出,“数字技术正以新理念、新业态、新模式全面融入人类经济、政治、文化、社会、生态文明建设各领域和全过程”在当前数字世界和物理世界加速融合的大背景下,人工智能生成内容(Artificial Intelligence Generated Content,简称 AIGC)正在悄然引导着一场深刻的变革,重塑甚至颠覆数字内容的生产方式和消费模式,将极大地丰富人们的数字生活,是未来全面迈向数字文明新时代不可或缺的支撑力量本白皮书重点从 AIGC 技术、应用和治理等维度进行了阐述在技术层面,梳理提出了 AIGC 技术体系,既涵盖了对现实世界各种内容的数字化呈现和增强,也包括了基于人工智能的自主内容创作在应用层面,重点分析了 AIGC 在传媒、电商、影视等行业和场景的应用情况,探讨了以虚拟数字人、写作机器人等为代表的新业态和新应用在治理层面,从政策监管、技术能力、企业应用等视角,分析了AIGC 所暴露出的版权纠纷、虚假信息传播等各种问题最后,从政府、行业、企业、社会等层面,给出了 AIGC 发展和治理建议由于人工智能仍处于飞速发展阶段,我们对 AIGC 的认识还有待进一步深化,白皮书中存在不足之处,敬请大家批评指正。

      目 录一、 人工智能生成内容的发展历程与概念 1(一)AIGC 历史沿革 1(二)AIGC 的概念与内涵 4二、人工智能生成内容的技术体系及其演进方向 7(一)AIGC 技术升级步入深化阶段 7(二)AIGC 大模型架构潜力凸显 10(三)AIGC 技术演化出三大前沿能力 18三、人工智能生成内容的应用场景 26(一)AIGC+传媒:人机协同生产,推动媒体融合 27(二)AIGC+电商:推进虚实交融,营造沉浸体验 29(三)AIGC+影视:拓展创作空间,提升作品质量 32(四)AIGC+娱乐:扩展辐射边界,获得发展动能 35(五)AIGC+其他:推进数实融合,加快产业升级 37四、人工智能生成内容发展面临的问题 38五、发展建议与展望 43(一)发展建议 43(二)未来展望 48图 目 录图 1 AIGC 发展历程 4图 2 AIGC 多模态大模型生成结果图 17图 3 OpenAI AIGC 多模态大模型 DALL E 2 生成结果图 18图 4 AIGC 的三大前沿能力 19图 5 AIGC 应用视图 27一、人工智能生成内容的发展历程与概念1950 年,艾伦·图灵(Alan Turing)在其论文《计算机器与智能(Computing Machinery and Intelligence)》中提出了著名的“图灵测试”,给出了判定机器是否具有“智能”的试验方法,即机器是否能够模仿人类的思维方式来“生成”内容继而与人交互。

      某种程度上来说,人工智能从那时起就被寄予了用于内容创造的期许经过半个多世纪的发展,随着数据快速积累、算力性能提升和算法效力增强,今天的人工智能不仅能够与人类进行互动,还可以进行写作、编曲、绘画、视频制作等创意工作2018 年,人工智能生成的画作在佳士得拍卖行以 43.25 万美元成交,成为世界上首个出售的人工智能艺术品, 引发各界关注随着人工智能越来越多地被应用于内容创作,人工智能生成内容(Artificial Intelligence Generated Content,简称 AIGC)的概念悄然兴起一)AIGC 历史沿革结合人工智能的演进历程,AIGC 的发展大致可以分为三个阶段,即:早期萌芽阶段(20 世纪 50 年代至 90 年代中期)、沉淀积累阶段(20 世纪 90 年代中期至 21 世纪 10 年代中期),以及快速发展阶段(21 世纪 10 年代中期至今)早期萌芽阶段(1950s-1990s),受限于当时的科技水平,AIGC仅限于小范围实验1957 年,莱杰伦·希勒(Lejaren Hiller)和伦纳德·艾萨克森(Leonard Isaacson)通过将计算机程序中的控制变量换成音符完成了历史上第一支由计算机创作的音乐作品——弦乐四重奏《依利亚克组曲(Illiac Suite)》。

      1966 年,约瑟夫·魏岑鲍姆(Joseph Weizenbaum)和肯尼斯·科尔比(Kenneth Colby)共同开发了世界第一款可人机对话的机器人“伊莉莎(Eliza)”,其通过关键字扫描和重组完成交互任务80 年代中期,IBM 基于隐形马尔科夫链模型(Hidden Markov Model, HMM)创造了语音控制打字机“坦戈拉(Tangora)”,能够处理约 20000 个单词80 年代末至 90 年代中, 由于高昂的系统成本无法带来可观的商业变现,各国政府纷纷减少了在人工智能领域的投入,AIGC 没有取得重大突破沉淀积累阶段(1990s-2010s),AIGC 从实验性向实用性逐渐转变2006 年,深度学习算法取得重大突破,同时期图形处理器(Graphics Processing Unit, GPU)、张量处理器(Tensor Processing Unit, TPU)等算力设备性能不断提升,互联网使数据规模快速膨胀并为各类人工智能算法提供了海量训练数据,使人工智能发展取得了显著的进步但是 AIGC 依然受限于算法瓶颈,无法较好地完成创作任务, 应用仍然有限,效果有待提升。

      2007 年,纽约大学人工智能研究员罗斯·古德温装配的人工智能系统通过对公路旅行中的一切所见所闻进行记录和感知,撰写出小说《1 The Road》作为世界第一部完全由人工智能创作的小说,其象征意义远大于实际意义,整体可读性不强, 拼写错误、辞藻空洞、缺乏逻辑等缺点明显2012 年,微软公开展示了一个全自动同声传译系统, 基于深层神经网络( Deep Neural Network, DNN)可以自动将英文演讲者的内容通过语音识别、语言翻译、语音合成等技术生成中文语音快速发展阶段(2010s-至今),自 2014 年起,随着以生成式对抗网络(Generative Adversarial Network, GAN)为代表的深度学习算法的提出和迭代更新,AIGC 迎来了新时代,生成内容百花齐放,效果逐渐逼真直至人类难以分辨2017 年,微软人工智能少女“小冰”推出了世界首部 100%由人工智能创作的诗集《阳光失了玻璃窗》2018 年,英伟达发布的StyleGAN 模型可以自动生成图片,目前已升级到第四代模型StyleGAN-XL,其生成的高分辨率图片人眼难以分辨真假 2019 年,DeepMind 发布了 DVD-GAN 模型用以生成连续视频,在草地、广场等明确场景下表现突出。

      2021 年,OpenAI 推出了 DALL-E 并于一年后推出了升级版本 DALL-E-2,主要应用于文本与图像的交互生成内容,用户只需输入简短的描述性文字,DALL-E-2 即可创作出相应极高质量的卡通、写实、抽象等风格的绘画作品来源:中国信息通信研究院图 1 AIGC 发展历程(二)AIGC 的概念与内涵目前,对 AIGC 这一概念的界定,尚无统一规范的定义国内产学研各界对于 AIGC 的理解是“ 继专业生成内容( Professional Generated Content, PGC)和用户生成内容(User Generated Content, UGC)之后,利用人工智能技术自动生成内容的新型生产方式”在国际上对应的术语是“人工智能合成媒体(AI-generated Media 或Synthetic Media)”1,其定义是“通过人工智能算法对数据或媒体进行生产、操控和修改的统称”综上所述,我们认为 AIGC 既是从内容生产者视角进行分类的一类内容,又是一种内容生产方式,还是用于内容自动化生成的一类技术集合本白皮书主要聚焦于 AIGC 含义1 维基百科:“人工智能合成媒体(AI-generated Media 或 Synthetic Media)” https://en.wikipedia.org/wiki/Synthetic_media中的技术部分。

      为了帮助不同领域的受众群体更好的理解 AIGC,我们从发展背景、技术能力、应用价值三个方面对其概念进行深入剖析从发展背景方面来看,AIGC 的兴起源于深度学习技术的快速突破和日益增长的数字内容供给需求一方面,技术进步驱动 AIGC 可用性不断增强在人工智能发展初期,虽然对 AIGC 进行了一些初步尝试,但受限各种因素,相关算法多基于预先定义的规则或者模板, 还远远算不上是智能创作内容的程度近年来,基于深度学习算法的AIGC 技术快速迭代,彻底打破了原先模板化、公式化、小范围的局限,可以快速、灵活地生成不同模态的数据内容另一方面,海量需 求牵引AIGC 应用落地随着数字经济与实体经济融合程度不断加深, 以及 Meta、微软、字节跳动等平台型巨头的数字化场景向元宇宙转型,人类对数字内容总量和丰富程度的整体需求不断提高数字内容 的生产取决于想象能力、制造能力和知识水平;传统内容生产手段受 限于人力有限的制造能力,逐渐无法满足消费者对于数字内容的消费 需求,供给侧产能瓶颈日益凸显基于以上原因,AIGC 在各行业中得到越来越广泛的应用,市场潜力逐渐显现从技术能力方面来看,AIGC 根据面向对象、实现功能的不同可分为三个层次。

      一是智能数字内容孪生,其主要目标是建立现实世界到数字世界的映射,将现实世界中的物理属性(如物体的大小、纹理、颜色等)和社会属性(如主体行为、主体关系等)高效、可感知地进行数字化二是智能数字内容编辑,其主要目的是建立数字世界与现实世界的双向交互在数字内容孪生的基础上,从现实世界实现对虚拟数字世界中内容的控制和修改,同时利用数字世界高效率仿真和低成本试错的优势,为现实世界的应用提供快速迭代能力三是智能数字内容创作,其主要目标是让人工智能算法具备内容创作和自我演化的能力,形成的 AIGC 产品具备类似甚至超越人的创作能力以上三个层面的能力共同构成 AIGC 的能力闭环从应用价值方面来看,AIGC 将有望成为数字内容创新发展的新引擎,为数字经济发展注入全新动能一方面,AIGC 能够以优于人类的制造能力和知识水平承担信息挖掘、素材调用、复刻编辑等基础性机械劳动,从技术层面实现以低边际成本、高效率的方式满足海量个性化需求;同时能够创新内容生产的流程和范式,为更具想象力的内容、更加多样化的传播方式提供可能性,推动内容生产向更有创造力的方向发展另一方面,AIGC 能够通过支持数字内容与其他产业的多维互动、融合渗透从而孕育新业态新模式,打造经济发展新增长点,为千行百业发展提供新动能。

      此外,2021 年以来,“元宇宙”呈现出超出想象的发展爆发力;作为数实融合的“终极”数字载体,元宇宙将具备持续性、实时性、可创造性等特征,也将通过 AIGC 加速复刻物理世界、进行无限内容创作,从而实现自发有机生长二、人工智能生成内容的技术体系及其演进方向AIGC 作为人工智能技术和产业应用的要素之一,随着技术能力的不断迭代升级,正在降低内容创作门槛、释放创作能力,未来将推动数实融合趋势下内容创作的范式转变探讨其能力体系的构成,即赋能内容创作的技术路径,对制定领域内标准、建立行业生态、争取更加广泛的开发者和应用场景具有十分重要的意义本部分从技术驱动的视角出发,对。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.