
6_全等三角形全章复习与巩固(基础)知识讲解.doc
8页全等三角形全章复习与巩固【学习目标】1. 理解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等实行证明,掌握综合法证明的格式;3.会作角的平分线,理解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质实行证明.【知识网络】【要点梳理】一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等要点一、全等三角形的判定与性质要点二、全等三角形的证明思路要点三、角平分线的性质1.角的平分线的性质定理 角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理 角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线 三角形角平分线交于一点,且到三边的距离相等.4.与角平分线相关的辅助线 在角两边截取相等的线段,构造全等三角形; 在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.使用全等三角形,能够证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.能够适当总结证明方法.1. 证明线段相等的方法: (1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2. 证明角相等的方法:(1) 利用平行线的性质实行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定实行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3. 证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4. 辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)假如要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件. (3)假如现有图形中的任何两个三角形之间不存有全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定 1、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC⊥BE . 【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE. 类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD中,AD∥CB,AB∥CD.求证:∠B=∠D.举一反三:【变式】在ΔABC中,AB=AC.求证:∠B=∠C(2).倍长中线法:3、己知:在ΔABC中,AD为中线.求证:AD<【变式】若三角形的两边长分别为5和7, 则第三边的中线长的取值范围是( ) A.1 << 6 B.5 << 7 C.2 << 12 D.无法确定(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、在ΔABC中,AB>AC.求证:∠B<∠C(4).利用截长(或补短)法构造全等三角形:5、如下图,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.类型三、全等三角形动态型问题6、如图(1),AB⊥BD于点B,ED⊥BD于点D,点C是BD上一点.且BC=DE,CD=AB.(1)试判断AC与CE的位置关系,并说明理由;(2)如图(2),若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第(1)问中AC与BE的位置关系还成立吗?(注意字母的变化)【变式】如图(1),△ABC中,BC=AC,△CDE中,CE=CD,现把两个三角形的C点重合,且使∠BCA=∠ECD,连接BE,AD.求证:BE=AD.若将△DEC绕点C旋转至图(2),(3)所示的情况时,其余条件不变,BE与AD还相等吗?为什么? 一.选择题1. 如下图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )A.2 B.3 C.5 D.2.52. 在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是( )A. ∠A B. ∠B C. ∠C D. ∠B或∠C3. 如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于 ( )A.∠ACB B.∠CAF C.∠BAF D.∠BAC 4. 在以下结论中, 准确的是( ) A.全等三角形的高相等 B.顶角相等的两个等腰三角形全等 C. 一角对应相等的两个直角三角形全等 D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若段CD上求一点P,使它到OA,OB的距离相等,则P点是( ). A. 线段CD的中点 B. OA与OB的中垂线的交点 C. OA与CD的中垂线的交点 D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出以下四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有( )组.A.1组 B.2组 C.3组 D.4组7. 假如两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A. 相等 B.不相等 C.互补 D.相等或互补8. △ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) A.45° B.20° C.、30° D.15°二.填空题9. 已知,若△ABC的面积为10 ,则的面积为________ ,若的周长为16,则△ABC的周长为________.10. △ABC和△ADC中,以下三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11. 如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则的面积为____.12. 以下说法中:①假如两个三角形能够依据“AAS”来判定全等,那么一定也能够依据“ASA”来判定它们全等;②假如两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.准确的是_____.13. 如右图,在△ABC中,∠C=90°,BD平分∠CBA交AC于点D.若AB=,CD=,则△ADB的面积为______________ .14.如图,已知AB⊥BD, AB∥ED,AB=ED,要说明ΔABC≌ΔEDC,若以“SAS”为依据,还要添加的条件为______________;若添加条件AC=EC,则能够用_______公理(或定理)判定全等.15. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.16. 在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E.若AB=20cm,则△DBE的周长为_________.三.解答题17. 已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC.18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB于D.求证: AC=AD 19. 如图(1),AB⊥BD于点B,ED⊥BD于点D,点C是BD上一点.且BC=DE,CD=AB.(1)试判断AC与CE的位置关系,并说明理由;(2)如图(2),若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第(1)问中AC与BE的位置关系还成立吗?(注意字母的变化)20. 已知如下图,PA=PB,∠1+∠2=180°,求证:OP平分∠AOB. 。
