几何常见辅助线做法答题策略.doc
11页作辅助线的常用方法一、 在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1、 已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.证明:(法一)将DE两边延长分别交AB、AC 于M、N, 在△AMN中,AM+AN > MD+DE+NE;(1) 在△BDM中,MB+MD>BD; (2) 在△CEN中,CN+NE>CE; (3) 由(1)+(2)+(3)得: AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2) 延长BD交 AC于F,廷长CE交BF于G,在△ABF和△GFC和△GDE中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE(同上)………………………………..(2) DG+GE>DE(同上)…………………………………….(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC。
二、 在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC分析:因为∠BDC与∠BAC不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于在外角的位置,∠BAC处于 在内角的位置;证法一:延长BD交AC于点E,这时∠BDC是△EDC的外角, ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC证法二:连接AD,并廷长交BC于F,这时∠BDF是△ABD的 外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+ ∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三 角 形的内角位置上,再利用不等式性质证明三、 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。
分析:要证BE+CF>EF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠2, ∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同个三角形中证明:在DN上截取DN=DB,连接NE,NF,则DN=DC,在△DBE和△NDE中: DN=DB (辅助线作法) ∠1=∠2 (已知) ED=ED (公共边)∴△DBE≌△NDE (SAS)∴BE=NE (全等三角形对应边相等)同理可得:CF=NF在△EFN中EN+FN>EF(三角 形两边之和大于第三边)∴BE+CF>EF注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素四、 有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF证明:廷长ED至M,使DM=DE,连接 CM,MF在△BDE和△CDM中, BD=CD (中点定义) ∠1=∠5 (对顶角相等) ED=MD (辅助线作法) ∴△BDE≌△CDM (SAS) 又∵∠1=∠2,∠3=∠4 (已知) ∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90°即:∠EDF=90° ∴∠FDM=∠EDF =90°在△EDF和△MDF中 ED= MD (辅助线作 法) ∠EDF=∠FDM (已证) DF=DF (公共边) ∴△EDF≌△MDF (SAS) ∴EF=MF (全等三角形对应边相等) ∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边) ∴BE+CF>EF上题也可加倍FD,证法同上。
注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中五、 在三角形中线时,常廷长加倍中线,构造全等三角形例如:如图5-1:AD为 △ABC的中线,求证:AB+AC>2AD分析:要证AB+AC>2AD,由图想到: AB+BD>AD,AC+CD>AD,所以有AB+AC+ BD+CD > AD +AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去 证明:延长AD至E,使DE=AD,连接BE,CE ∵AD为△ABC的中线 (已知) ∴BD=CD (中线定义) 在△ACD和△EBD中 BD=CD (已证) ∠1=∠2 (对顶角相等) AD=ED (辅助线作法) ∴△ACD≌△EBD (SAS) ∴BE=CA(全等三角形对应边相等) ∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边) ∴AB+AC>2AD常延长中线加倍,构造全等三角形)练习:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图5-2, 求证EF=2AD。
六、 截长补短法作辅助线例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点 求证:AB-AC>PB-PC 分析:要证:AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN, 再连接PN,则PC=PN,又在△PNB中,PB-PN
七、 延长已知边构造三角形: 例如:如图7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B, 求证:AD=BC分析:欲证 AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC, 但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角证明:分别延长DA,CB,它们的延长交于E点, ∵AD⊥AC BC⊥BD (已知) ∴∠CAE=∠DBE =90° (垂直的定义) 在△DBE与△CAE中 ∠DBE=∠CAE (已证) BD=AC (已知) ∠E=∠E (公共角) ∴△DBE≌△CAE (AAS) ∴ED=EC EB=EA (全等三角形对应边相等) ∴ED- EA= EC- EB 即:AD=BC当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决例如:如图8-1:AB∥CD,AD∥BC 求证:AB=CD分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。
证明:连接AC(或BD) ∵AB∥CD AD∥BC (已知) ∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等)在△ABC与△CDA中, ∠1=∠2 (已证) OD=OD (公共边) ∠3=∠4 (已证) ∴△ABC≌△CDA (ASA) ∴AB=CD (全等三角形对应边相等)九、 有和角平分线垂直的线段时,通常把这条线段延长 例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E 求证:BD=2CE 分析:要证BD=2CE,想到要构造线段2CE, 同时CE与∠ABC的平分线垂直,想到 要将其延长 证明:分别延长BA,CE交于F ∵BE⊥CF (已知) ∴∠BEF=∠BEC=90° (垂直的定义) 在△BEF与△BEC中, ∠1=∠2 (已知) BE=BE (公共边) ∠BEF=∠BEC (已证) ∴△BEF≌△BEC (ASA) ∴CE=FE=CF (全等三角形对应边相等) ∵∠BAC=90° BE⊥CF (已知) ∴∠BAC=∠CAF=90° ∠1+∠BDA=90°∠1+∠BFC=90 ∴∠BDA=∠BFC 在△ABD与△ACF中 ∠BAC=∠CAF (已证) ∠BDA=∠BFC (已证) AB=AC (已知) ∴△ABD≌△ACF (AAS) ∴BD=CF (全等三角形对应边相等) ∴BD=2C。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


