
2023学年安徽省无为县数学八年级第一学期期末经典模拟试题含解析.doc
20页2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题(每题4分,共48分)1.甲乙两人同解方程 时,甲正确解得 ,乙因为抄错c而得 ,则a+b+c的值是( )A.7 B.8 C.9 D.102.在平面直角坐标系中,点到原点的距离是( )A.1 B. C.2 D.3.已知正n边形的一个内角为135°,则边数n的值是( )A.6 B.7 C.8 D.104.下列各数中是无理数的是( )A.π B. C. D.05.张师傅驾车从甲地到乙地匀速行驶,行驶中油箱剩余油量(升)与行驶时间(小时)之间的关系式为,这里的常数“”,“”表示的实际意义分别是( )A.“”表示每小时耗油升,“”表示到达乙地时油箱剩余油升B.“”表示每小时耗油升,“”表示出发时油箱原有油升C.“”表示每小时耗油升,“”表示每小时行驶千米D.“”表示每小时行驶千米,“”表示甲乙两地的距离为千米6.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A.(-3,0) B.(-1,6) C.(-3,-6) D.(-1,0)7.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( )A.1个 B.2个 C.3个 D.4个8.如图,为估计池塘岸边 A、B 两点的距离,小方在池塘的一侧选取一点 O, 测得 OA=8 米,OB=6 米,A、B 间的距离不可能是( )A.12 米 B.10 米 C.15 米 D.8 米9.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°10.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.25° B.30° C.35° D.40°11.二元一次方程组的解是( )A. B. C. D.12.等腰三角形的一个角为50°,则这个等腰三角形的底角为( )A.65° B.65°或80° C.50°或65° D.40°二、填空题(每题4分,共24分)13.如图,已知A(3,0),B(0,﹣1),连接AB,过点B的垂线BC,使BC=BA,则点C坐标是_____.14.分解因式:_______15.已知在中,,,点为直线上一点,连接,若,则_______________.16.不等式 的解集为________.17.在函数中,那么_______________________.18.若x2+ax+4是完全平方式,则a=_____.三、解答题(共78分)19.(8分)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.过射线AD上一点M作BM的垂线,交直线AC于点N.(1)如图1,点M在AD上,若∠N=15°,BC=2,则线段AM的长为 ;(2)如图2,点M在AD上,求证:BM=NM;(3)若点M在AD的延长线上,则AB,AM,AN之间有何数量关系?直接写出你的结论,不证明.20.(8分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.21.(8分)如图,已知Rt△ABC中,∠C=90°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG.(1)依题意补全图形;(2)求∠AGE的度数(用含α的式子表示);(3)猜想:线段EG与EF,AF之间是否存在一个数量关系?若存在,请写出这个数量关系并证明;若不存在,请说明理由.22.(10分)甲、乙两人同时从相距千米的地匀速前往地,甲乘汽车,乙骑电动车,甲到达地停留半个小时后按原速返回地,如图是他们与地之间的距离(千米)与经过的时间(小时)之间的函数图像.(1) ,并写出它的实际意义 ;(2)求甲从地返回地的过程中与之间的函数表达式,并写出自变量的取值范围;(3)已知乙骑电动车的速度为千米/小时,求乙出发后多少小时与甲相遇?23.(10分)如图,L1、L2分别表示两个一次函数的图象,它们相交于点P.(1)求出两条直线的函数关系式;(2)点P的坐标可看作是哪个二元一次方程组的解?(3)求出图中△APB的面积.24.(10分)先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.25.(12分)为了了解400名八年级男生的身体发育情况,随机抽取了100名八年级男生进行身高测量,得到统计表:估计该校八年级男生的平均身高为______________cm.身高(cm)人数组中值221504516028170518026.在平面直角坐标系中的位置如图所示.在图中画出与关于y轴对称的图形,并写出顶点、、的坐标;若将线段平移后得到线段,且,求的值.参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意可以得到a、b、c的三元一次方程组,从而可以求得a、b、c的值,本题得以解决.【详解】解:根据题意可知, ∴3a-2b=2,3c+14=8,-2a+2b=2 ∴c=-2,a=4,b=5 ∴a+b+c=7. 故答案为:A.【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.2、D【分析】根据:(1)点P(x,y)到x轴的距离等于|y|; (2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点到原点的距离是 故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.3、C【解析】试题分析:根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.解:∵正n边形的一个内角为135°,∴正n边形的一个外角为110°﹣135°=45°,n=360°÷45°=1.故选C.考点:多边形内角与外角.4、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】解:π是无理数;=4,=3,0都是有理数.故选:A.【点睛】此题考查的是无理数的判断,掌握无理数的定义是解决此题的关键.5、B【分析】将一次函数与实际情况结合,能快速得出-6.5和23的实际意义.【详解】一次函数表示的是汽车行驶时间t与油箱中剩余油量的关系生活中,行驶时间越久,则剩余油量应该越少可知:-6.5表示每小时耗油6.5升,23表示出发时油箱剩余油23升故选:B.【点睛】本题考查一次函数的应用,解题关键是将函数解析式与事情情况对应起来.6、A【解析】试题分析:点P(-2,-3)向左平移1个单位后坐标为(-3,-3),(-3,-3)向上平移3个单位后为(-3,0),∴点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(-3,0),故选A.考点:坐标的平移7、D【分析】根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.【详解】①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF-GF,DF=CD-FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵AE:AB=2:3,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH==,CD=6x,则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确,所以正确的有4个,故选D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.8、C【解析】试题分析:根据两边之和大于第三边,两边之差小于第三边,AB的长度在2和14之间,故选C.考点:三角形三边关系.A9、C【解析】根据扇形统计图中的百分比的意义逐一判断即可得.【详解】解:A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为,超过,此选项正确;C.每天阅读1小时以上的居民家庭孩子占,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是,此选项正确;故选:C.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.10、D【解析】∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°.∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






