8.6 空间直线、平面的垂直(解析版).docx
71页8.6 空间直线、平面的垂直 【知识点梳理】知识点一:异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,则a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)异面直线所成的角θ的取值范围:0°<θ≤90°.(3)如果两条异面直线a,b所成的角是直角,就说这两条直线互相垂直,记作a⊥b.知识点二:直线与直线垂直的定义两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直知识点诠释:空间中两直线垂直可能是相交垂直,也可能是异面垂直,即两条直线互相垂直时可能没有垂足知识点三:直线与平面垂直的定义与判定1.直线和平面垂直的定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段垂线段的长度叫做这个点到平面的距离知识点诠释:(1)定义中的“任何直线”与“所有直线”是同义语,定义是说这条直线和平面内所有直线垂直. (2)直线和平面垂直是直线和平面相交的一种特殊形式.(3)如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直,简述之,即“线面垂直,则线线垂直”,这是我们判定两条直线垂直时经常使用的一种重要方法.画直线和平面垂直时,通常要把直线画成和表示平面的平行四边形的一边垂直,如图所示.符号语言描述:.(4)在平面几何中,我们有命题:经过一点有且只有一条直线与已知直线垂直,在本节中,也有类似的命题. 命题1:过一点有且只有一条直线和已知平面垂直. 命题2:过一点有且只有一个平面和已知直线垂直.2.直线和平面垂直的判定定理文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.图形语言:符号语言:特征:线线垂直线面垂直知识点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视.(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要.相关的重要结论 ①过一点与已知直线垂直的平面有且只有一个;过一点与已知平面垂直的直线有且只有一条. ②如果两条平行线中的一条与一个平面垂直,那么另一条也与这个平面垂直.③如果两个平行平面中的一个与一条直线垂直,那么另一个也与这条直线垂直.知识点四:直线与平面所成的角(1)如图,一条直线PA和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足,过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(2)一条直线垂直于平面,称它们所成的角是直角;一条直线在平面内或一条直线和平面平行,称它们所成的角是0°的角,于是,直线与平面所成的角θ的范围是0°≤θ≤90°.知识点五:直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:图形语言:知识点六:距离(1)直线与平面的距离:一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离.(2)平面与平面的距离:两个平面平行时,其中一个平面内任意一点到另一个平面的距离.知识点七:二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.图中的二面角可记作:二面角α-AB-β或α-l-β或P-AB-Q.(2)二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直与直线l的射线OA,OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.平面角是直角的二面角叫做直二面角.知识点八:平面与平面垂直的定义与判定1.平面与平面垂直定义定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.表示方法:平面与垂直,记作.画法:两个互相垂直的平面通常把直立平面的竖边画成与水平平面的横边垂直.如图: 2.平面与平面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号语言:图形语言:特征:线面垂直面面垂直知识点诠释:平面与平面垂直的判定定理告诉我们,可以通过直线与平面垂直来证明平面与平面垂直.通常我们将其记为“线面垂直,则面面垂直”.因此,处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题.以后证明平面与平面垂直,只要在一个平面内找到两条相交直线和另一个平面内的一条直线垂直即可.知识点九:平面与平面垂直的性质1.性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:图形语言:知识点诠释:面面垂直的性质定理是作线面垂直的依据和方法,在解决二面角问题中作二面角的平面角经常用到.这种线面垂直与面面垂直间的相互转化,是我们立体几何中求解(证)问题的重要思想方法.2.平面与平面垂直性质定理的推论如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.知识点十:垂直关系的综合转化线线垂直、线面垂直、面面垂直是相互联系的,能够相互转化,转化的纽带是对应的定义、判定定理和性质定理,具体的转化关系如下图所示: 知识点十一:求点线、点面、线面距离的方法 (1)若P是平面外一点,a是平面内的一条直线,过P作平面的垂线PO,O为垂足,过O作OA⊥a,连接PA,则以PA⊥a.则线段PA的长即为P点到直线a的距离(如图所示). (2)一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离叫直线与平面的距离. (3)求点面距离的常用方法:①直接过点作面的垂线,求垂线段的长,通常要借助于某个直角三角形来求解. ②转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解. ③体积法:利用三棱锥的特征转换位置来求解.知识点十二:作二面角的三种常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图①,则∠AOB为二面角α-l-β的平面角. (2)垂直法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图②,∠AOB为二面角α-l-β的平面角.(3)垂线法:过二面角的一个面内异于棱上的一点A向另一个平面作垂线,垂足为B,由点B向二面角的棱作垂线,垂足为O,连接AO,则∠AOB为二面角的平面角或其补角.如图③,∠AOB为二面角α-l-β的平面角.【典型例题】题型一:证明两直线垂直例1.(2021·全国·高一课前)如图所示,在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=.求证:AD⊥BC.【解析】证明:如图所示,取BD的中点H,连接EH,FH.因为E是AB的中点,且AD=2,所以EH∥AD,EH=1.同理FH∥BC,FH=1.所以∠EHF(或其补角)是异面直线AD,BC所成的角.因为EF=,所以EH2+FH2=EF2,所以EFH是等腰直角三角形,EF是斜边,所以∠EHF=90°,即AD与BC所成的角是90°,所以AD⊥BC.解题技巧(证明两直线垂直的常用方法)(1)利用平面几何的结论,如矩形,等腰三角形的三线合一,勾股定理;(2)定义法:即证明两条直线夹角是90°;(3)利用一些事实:两条平行直线,若其中一条直线垂直另一条直线,则其平行线也垂直此直线.例2.(2021·全国·高一课时)如图,已知正方体.(1)求与所成角的大小;(2)若E,F分别为棱AB,AD的中点,求证:.【解析】解:(1)如图,连接,由几何体是正方体,知四边形为平行四边形,所以,从而与所成的角为与所成的角,由,可知.故与所成的角为.(2)如图,连接,易知四边形为平行四边形,所以,因为为的中位线,所以.又,所以,所以.题型二 求异面直线所成的角例3.(2021·全国·高一课时)在正方体ABCD-A1B1C1D1中,E,F分别是A1B1,B1C1的中点,求异面直线DB1与EF所成角的大小.【解析】如图所示,连接A1C1,B1D1,并设它们相交于点O,取DD1的中点G,连接OG,A1G,C1G,则OG∥B1D,EF∥A1C1,∴∠GOA1为异面直线DB1与EF所成的角(或其补角).∵GA1=GC1,O为A1C1的中点,∴GO⊥A1C1.∴异面直线DB1与EF所成的角为90°.解题技巧 (求异面直线所成角的一般步骤)求异面直线所成角的一般步骤: (1)找(或作出)异面直线所成的角——用平移法,若题设中有中点,常考虑中位线. (2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设(2)所求角大小为θ.若0°<θ≤90°,则θ即为所求;若90°<θ<180°,则180°-θ即为所求例4.(2021·全国·高一课时)如图所示,AB是圆O的直径,点C是弧AB的中点,D、E分别是VB、VC的中点,求异面直线DE与AB所成的角.【解析】解:因为D、E分别是VB、VC的中点,所以BC∥DE,因此∠ABC是异面直线DE与AB所成的角,又因为AB是圆O的直径,点C是弧AB的中点,所以△ABC是以∠ACB为直角的等腰直角三角形,于是∠ABC=45°,故异面直线DE与AB所成的角为45°.题型三 线面垂直的概念与定理的理解例5.(2021·全国·高一课时)设是空间中的一个平面,l,m,n是三条不同的直线,则( )A.若,,,,则 B.若,则C.若,则 D.若,,则【答案】B【解析】解:由是空间中的一个平面,,,是三条不同的直线,知:对A:若,,,,则与相交、平行或,故A错误;对B:若,,,则由线面垂直的判定定理得,故B正确;对C:若,,,则,故C错误;对D:若,,,则与相交、平行或异面,故D错误.故选:B.解题技巧(判定定理理解的注意事项)线面垂直的判定定理中,直线垂直于平面内的两条相交直线,“相交”两字必不可少,否则,就是换成无数条直线,这条直线也不一定与平面垂直.例6.(2021·全国·高一课前)在正方体中P,Q分别是和的中点,则下列判断错误的是( )A. B.平面C. D.平面【答案】D【解析】取中点,连接,因为P,Q分别是和的中点,易得,又,平面,平面,,故A正确;分别取中点,连接,易得且,所以四边形为平行四边形,,又,,故C正确;,,又,,平面,故B正确;平面即为平面,显然平面,故D错误.故选:D.例7.(2021·全国·高一课时)如图,在正方形中,E、F分别为、的中点,H是的中点.现沿、、把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是( )A.平面 B.平面C.平面 D.平面【。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


