
辽宁省沈阳市一三四中学2024学年八年级数学第一学期期末综合测试试题含解析.doc
20页2024学年八年级上学期数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内2.答题时请按要求用笔3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每题4分,共48分)1.如图所示,直角三边形三边上的半圆面积从小到大依次记为、、,则、、 的关系是( )A. B. C. D.2.在实数,,,中,无理数是 ( )A. B. C. D.3.如图,在中,,边上的垂直平分线分别交、于点、,若的周长是11,则直线上任意一点到、距离和最小为( )A.28 B.18 C.10 D.74.如图,已知△ABC中,点O是BC、AC的垂直平分线的交点,OB=5cm,AB=8cm,则△AOB的周长是( )A.21cm B.18cm C.15cm D.13cm5.篮球小组共有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示,这15名同学进球数的众数和中位数分别是( )A.6,7 B.7,9 C.9,7 D.9,96.若a>b,则下列结论不一定成立的是( )A.a+2>b+2 B.-3a<-3b C.a2>b2 D.1-4a<1-4b7.下列一些标志中,可以看作是轴对称图形的是( )A. B. C. D.8.分式有意义的条件是( )A. B. C.且 D.9.图是一个长为宽为的长方形,用剪刀沿它的所有对称轴剪开,把它分成四块,然后按图那样拼成一个正方形,则中间阴影部分的面积是( )A. B.C. D.10.若3x>﹣3y,则下列不等式中一定成立的是 ( )A. B. C. D.11.若关于的方程的解是正数,则的取值范围是( )A. B.且 C.且 D.且12.一副三角板如图摆放,则的度数为( )A. B. C. D.二、填空题(每题4分,共24分)13.如图,和都是等腰三角形,且,当点在边上时,_________________度.14.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,若,大正方形的面积为13,则小正方形的面积为________.15.若点B(m+4,m-1)在x轴上,则m=_____;16.如图,△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),将△ABC关于y轴轴对称变换得到△A1B1C1,再将△A1B1C1关于直线x=2(即过(2,0)垂直于x轴的直线)轴对称变换得到△A2B2C2,再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4…,按此规律继续变换下去,则点A10的坐标为_____.17.如图,在梯形ABCD中,AD∥BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为_____.18.若,则_________三、解答题(共78分)19.(8分)先化简,再求值:20.(8分)(新知理解)如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.(解决问题)如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为 cm;(拓展研究)如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)21.(8分)如图,BF,CG分别是的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE,(1)求证:是等腰三角形.(2)若,求DE的长.22.(10分)(1)计算:(2)先化简,后求值:;其中23.(10分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了_____ h. 开挖6h时甲队比乙队多挖了____ m; (2)请你求出: ①甲队在的时段内,y与x之间的函数关系式;②乙队在的时段内,y与x之间的函数关系式;(3)当x 为何值时,甲、 乙两队在 施工过程中所挖河渠的长度相等?24.(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?25.(12分)已知:直线,点,分别是直线,上任意两点,在直线上取一点,使,连接,在直线上任取一点,作,交直线于点.(1)如图1,若点是线段上任意一点,交于,求证:;(2)如图2,点段的延长线上时,与互为补角,若,请判断线段与的数量关系,并说明理由.26.(1)分解因式:(x﹣2)2﹣2x+4 (2)解方程: .参考答案一、选择题(每题4分,共48分)1、A【分析】设三个半圆的直径分别为:d1、d2、d1,半圆的面积=π×()2,将d1、d2、d1代入分别求出S1、S2、S1,由勾股定理可得:d12+d22=d12,观察三者的关系即可.【详解】解:设三个半圆的直径分别为:d1、d2、d1,S1=×π×()2=,S2=×π×()2=,S1=×π×()2=.由勾股定理可得:d12+d22=d12,∴S1+S2=(d12+d22)==S1,所以S1、S2、S1的关系是:S1+S2=S1.故选A.【点睛】本题主要考查运用勾股定理结合图形求面积之间的关系,关键在于根据题意找出直角三角形,运用勾股定理求出三个半圆的直径之间的关系.2、D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【详解】解:在实数,,,中,=2,=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.3、D【分析】根据垂直平分线的性质和已知三角形的周长进行计算即可求得结果.【详解】解:∵DE是BC的中垂线,∴BE=EC,则AB=EB+AE=CE+EA,又∵△ACE的周长为11,故AB=11−4=1,直线DE上任意一点到A、C距离和最小为1.故选:D.【点睛】本题考查的是轴对称—最短路线问题,线段垂直平分线的性质(垂直平分线上任意一点到线段两端点的距离相等)有关知识,难度简单.4、B【分析】利用垂直平分线的性质定理,即垂直平分线上的点到线段两端的距离相等,通过等量代换可得.【详解】解:连接OC,∵点O段BC和AC的垂直平分线上,∴OB=OC,OA=OC∴OA=OB=5cm,∴的周长=OA+OB+AB=18(cm),故选:B.【点睛】本题考查线段的垂直平分线性质,掌握垂直平分线的性质定理为本题的关键.5、C【分析】根据中位数、众数的意义求解即可.【详解】解:学生进球数最多的是9个,共有6人,因此众数是9,将这15名同学进球的个数从小到大排列后处在第8位的是7个,因此中位数是7,故选:C.【点睛】本题考查中位数、众数的意义和求法,理解中位数、众数的意义.掌握计算方法是正确解答的关键.6、C【分析】根据不等式的性质逐项判断即得答案.【详解】解:A、若a>b,则a+2>b+2,故本选项结论成立,不符合题意;B、若a>b,则﹣3a<﹣3b,故本选项结论成立,不符合题意;C、若a>b≥0,则a2>b2,若0≥a>b,则a2<b2,故本选项结论不一定成立,符合题意;D、若a>b,则1-4a<1-4b,故本选项结论成立,不符合题意.故选:C.【点睛】本题考查了不等式的性质,属于常考题型,熟练掌握不等式的性质是解题的关键.7、B【分析】根据轴对称图形的定义逐项分析判断即可.【详解】解:A、C、D不符合轴对称图形的定义,故不是轴对称图形;B符合轴对称图形的定义,故B是轴对称图形.故选B.【点睛】本题考查了轴对称图形的识别,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.8、A【分析】根据分式有意义的条件即可求出答案.【详解】根据题意得:x+1≠0,∴x≠﹣1.故选:A.【点睛】本题考查了分式有意义的条件,解答本题的关键是熟练运用分式有意义的条件,本题属于基础题型.9、D【分析】根据图形列出算式,再进行化简即可.【详解】阴影部分的面积S=(a+b)2−2a•2b=a2+2ab+b2−4ab=(a−b)2,故选:D.【点睛】本题考查了完全平方公式的应用,能根据图形列出算式是解此题的关键.10、A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.11、C【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【详解】,方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x的方程的解是正数,得:m+6>0,解得:m>−6,∴m的取值范围是:m>−6且m≠−4,故选:C.【点睛】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键.12、C【分析】根据三角板的特点可得∠2和∠3的度数,然后利用三角形内角和定理求出∠1即可解决问题.【详解】解:如图,根据三角板的特点可知:∠2=60°,∠3=45°,∴∠1=180°-60°-45°=75°,∴∠α=∠1=75°,故选:C.【点睛】本题主要考查了三角形内角和定理,熟知三角形的内角和等于180°是解题的关键.二、填空题(每题4分,共24分)13、1【分析】先根据“SAS”证明△ABE≌△CBD,从而∠BAE=∠C.再根据等腰三角形的两底角相等求出∠C的度数,然后即可求出∠BAE的度数.【详解】∵和都是等腰三角形,∴AB=BC,BE=BD,∵,∴∠ABE=∠CBD,在△ABE和△CBD中,∵AB=BC,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD,∴∠BAE=∠C.∵AB=BC,∠ABC=100°,∴∠C=(180°-100°) ÷2=1°,∴∠BAE=1°.故答案为:1.【点睛】本题主要考查了等腰三角形的定义,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.14、1【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【详解】解:如图所示:。












