
SPSS回归模型分析答案及解题思路.docx
4页SPSS回归模型分析答案及解题思路 电视广告费用和报纸广告费用对公司营业收入 的回归模型分析 SPSS录入数据: 本研究关注的是电视广告费用和报纸广告费用对公司收入的影响 公司收入样本总数为8,M=93.75,SD=1.909;电视广告费用(X1)M=3.19,SD=0.961;报纸广告费用(x2)M=2.48,SD=0.911 通过皮尔逊相关性分析得出因变量与自变量x1和x2的相关系数分别为(r=0.8,p=0.008)和(r=-0.02,p=0.48),说明公司收入与电视广告费用呈显著性正相关,而公司收入与报纸广告费用相关不显著 以电视广告费用和报纸广告费用分别作为自变量,以公司收入作为因变量,进行线性回归具体结果见表1结果发现,电视广告费用对公司收入存在显著的正向影响(β=0.808,B=1.604,t=3.357,p<0.05,R2=0.653),即电视广告费用的增长会提升公司收入,且该模型能够解释结果的65.3%;报纸广告费用对公司收入不存在显著的正向影响(β=-0.021,t=-0.05,p=0.96) 表1:广告费用对公司收入的回归结果表 注: 表格中呈现了预测变量的非标准化系数, 括号内是标准误。
以电视广告费用和报纸广告费用同时作为自变量,以公司收入作为因变量,则两个费用对公司收入存在显著的正向影响(β电视=1.153,B电视=2.29,t=7.532,p<0.05;β报纸=0.621,B报纸=1.301,t=4.057,p<0.052, R2=0.919),即电视广告和报纸广告费用的同时增长会提升公司收入,且该模型能够解释结果的91.9%共线性分析:VIF电视广告=1.448,VIF报纸广告=1.448,均小于5,说明电视广告和报纸广告之间共线性可能性较低 思路及步骤: 1、公司收入样本总数为8,M=93.75,SD=1.909;电视广告费用M=3.19,SD=0.961; 报纸广告费用M=2.48,SD=0.911 步骤:回归-线性,之后选择如下: 2、通过皮尔逊相关性分析得出因变量与自变量x1和x2的相关系数分别为 (r=0.808,p=0.008)和(r=-0.021,p=0.481),说明公司收入与电视广告费用呈显著性正相关,而公司收入与报纸广告费用相关不显著 步骤,同上: 3、以电视广告费用和报纸广告费用分别作为自变量,以公司收入作为因变量, 进行线性回归。
具体结果见表1 结果发现,电视广告费用对公司收入存在显著的正向影响(β=1.064,t=3.357,p<0.05,R2=0.653),即电视广告费用的增长会提升公司收入,且该模型能够解释结果的65.3%; 步骤:回归-线性,之后如下: 报纸广告费用对公司收入不存在显著的正向影响(β= -0.043 , t= -0.050, p=0.962) 步骤:回归-线性,之后如下: 4、 表1:广告费用对公司收入的回归结果表 注: 表格中呈现了预测变量的非标准化系数, 括号内是标准误 步骤:回归-线性,之后选择如下: 5、以电视广告费用和报纸广告费用同时作为自变量,以公司收入作为因变 =2.290,t=7.532,量,则两个费用对公司收入存在显著的正向影响(β 电视 p<0.05;β报纸=1.301,t=4.057,p<0.05, R2=0.919),即电视广告和报纸广告费用的同时增长会提升公司收入,且该模型能够解释结果的91.9%。
共线性分析:VIF电视广告=1.448,VIF报纸广告=1.448,均小于5,说明电视广告和报纸广告之间共线性可能性较低 步骤,同上: 。












