
几何证明题(含答案).docx
5页14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用几何证明有两种 基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系这两类问题常常可以相互转化,如 证明平行关系可转化为证明角等或角互补的问题2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进, 直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件 看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此, 在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图 形在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题 的目的分类解析】1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可 化归为此类问题来证证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂 线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置证两直线平行,可用同位角、内错角或同 旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明证两条直线垂直,可转化为证一个角等于 90°,或利用两个锐角互余,或等腰三角形“三线合一”来证例3.如图3所示,设BP、CQ是AABC的内角平分线,AH、AK分别为A到BP、CQ的垂线AFHBNC证明:延长AH交BC于N,延长AK交BC于M求证:KH〃BCZA = 90 AE = BF, BD = DC例4.已知:如图4所示,AB=AC,常用辅助线,见本题证3、证明一线段和的问题一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段截长法)例5.已知:如图6所示在AABC中,ZB二60° ,ZBAC、ZBCA的角平分线AD、CE相交于0二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较 长线段补短法)例6.已知:如图7所示,正方形ABCD中,F在DC 上, E在BC 上, ZEAF二45°。
如图8所示,已知AABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连结CE、图10证明二:如图10所示,在AB上截取AF=AC,连结DFAC = AD = CE求证:de =1CD实战模拟】1.已知:如图11所示,AABC中,ZC二90°,D是AB上一点,DE丄CD于D,交BC于E,且有D 图112.已知:如图12所示,在AABC中,ZA二2ZB , CD是ZC的平分线求证:BC=AC+AD图123.已知:如图13所示,过AABC的顶点A,在ZA内任引一射线,过B、C作此射线的垂线BP和CQ设M为BC的中点求证:MP=MP-..图134. AABC 中,ABAC = 90° , AD丄BC 于 D,求证:AD < 1(AB + AC + 必)。












