
2007年数学四考研试题和标准答案.doc
16页2007年研究生入学考试数学四试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当时,与等价的无穷小量是 (A) (B) (C) (D) [ ](2)设函数在处连续,下列命题错误的是: (A)若存在,则 (B)若存在,则 . (B)若存在,则 (D)若存在,则. [ ](3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是: (A) (B) (C) (D) [ ](4)设函数连续,则二次积分等于(A) (B)(C) (D)(5)设某商品的需求函数为,其中分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是 (A) 10. (B) 20 (C) 30. (D) 40. [ ](6)曲线的渐近线的条数为(A)0. (B)1. (C)2. (D)3. [ ](7)设向量组线性无关,则下列向量组线性相关的是线性相关,则 (A) (B) (C) . (D) . [ ](8)设矩阵,则与 (A) 合同且相似 (B)合同,但不相似. (C) 不合同,但相似. (D) 既不合同也不相似 [ ](9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次击中目标的概率为 (A). (B). (C). (D) [ ](10)设随机变量服从二维正态分布,且与不相关,分别表示的概率密度,则在的条件下,的条件概率密度为 (A) . (B) . (C) . (D) . [ ]二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上.(11) __________.. (12)设函数,则________.(13) 设是二元可微函数,,则 __________.(14)微分方程满足的特解为________.(15)设矩阵,则的秩为 . (16)在区间中随机地取两个数,则这两个数之差的绝对值小于的概率为 .三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤.(17) (本题满分10分)设函数由方程确定,试判断曲线在点附近的凹凸性.(18) (本题满分11分) 设二元函数,计算二重积分,其中.(19) (本题满分11分) 设函数在上连续,在内具有二阶导数且存在相等的最大值,,证明:存在,使得.(20) (本题满分10分)设函数具有连续的一阶导数,且满足,求的表达式.(21) (本题满分11分) 设线性方程组与方程有公共解,求的值及所有公共解.(22) (本题满分11分)设三阶对称矩阵的特征向量值,是的属于的一个特征向量,记,其中为3阶单位矩阵. (I)验证是矩阵的特征向量,并求的全部特征值与特征向量;(II)求矩阵. (23) (本题满分11分)设二维随机变量的概率密度为 .(I)求;(II) 求的概率密度.1……【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当时,,,, 故用排除法可得正确选项为(B). 事实上,, 或.所以应选(B)【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(经济类)第一篇【例1.54】 【例1.55】.2……..【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数去进行判断,然后选择正确选项.【详解】取,则,但在不可导,故选(D). 事实上, 在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得.在(C)中,存在,则,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效. 完全类似例题见文登强化班笔记《高等数学》第2讲【例2】,文登07考研模拟试题数学二第一套(2).3……..【分析】本题实质上是求分段函数的定积分.【详解】利用定积分的几何意义,可得 ,, . 所以 ,故选(C).【评注】本题属基本题型. 本题利用定积分的几何意义比较简便. 类似例题见文登强化班笔记《高等数学》第5讲【例17】和【例18】,《数学复习指南》(经济类)第一篇【例3.38】【例3.40】.4…….【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分.【详解】由题设可知,,则, 故应选(B).【评注】本题为基础题型. 画图更易看出. 完全类似例题见文登强化班笔记《高等数学》第10讲【例5】,《数学复习指南》(经济类)第一篇【例7.5】,【例7.6】.5…….【分析】本题考查需求弹性的概念.【详解】选(D). 商品需求弹性的绝对值等于 , 故选(D).【评注】需掌握经济中的边际,弹性等概念.相关公式及例题见《数学复习指南》(经济类)第一篇【例11.2】.6……【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断.【详解】, 所以 是曲线的水平渐近线; ,所以是曲线的垂直渐近线; , ,所以是曲线的斜渐近线. 故选(D).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意当时的极限不同. 类似例题见文登强化班笔记《高等数学》第6讲第4节【例12】,《数学复习指南》(经济类)第一篇【例5.30】,【例5.31】.7……….【分析】本题考查由线性无关的向量组构造的另一向量组的线性相关性. 一般令,若,则线性相关;若,则线性无关. 但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由可知应选(A).或者因为,而, 所以线性相关,故选(A).【评注】本题也可用赋值法求解,如取,以此求出(A),(B),(C),(D)中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项. 完全类似例题见文登强化班笔记《线性代数》第3讲【例3】,《数学复习指南》(经济类)《线性代数》【例3.3】.8……【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得的特征值,并考虑到实对称矩阵必可经正交变换使之相似于对角阵,便可得到答案. 【详解】 由可得, 所以的特征值为3,3,0;而的特征值为1,1,0. 所以与不相似,但是与的秩均为2,且正惯性指数都为2,所以与合同,故选(B).【评注】若矩阵与相似,则与具有相同的行列式,相同的秩和相同的特征值. 所以通过计算与的特征值可立即排除(A)(C). 完全类似例题见《数学复习指南》(经济类)第二篇【例5.17】.9……..【分析】本题计算贝努里概型,即二项分布的概率. 关键要搞清所求事件中的成功次数.【详解】p={前三次仅有一次击中目标,第4次击中目标} , 故选(C).【评注】本题属基本题型. 类似例题见《数学复习指南》(经济类)第三篇【例1.29】【例1.30】10…….【分析】本题求随机变量的条件概率密度,利用与的独立性和公式可求解.【详解】因为服从二维正态分布,且与不相关,所以与独立,所以.故,应选(A).【评注】若服从二维正态分布,则与不相关与与独立是等价的. 完全类似例题和求法见文登强化班笔记《概率论与数理统计》第3讲【例3】,《数学复习指南》(经济类)第三篇第二章知识点精讲中的一(4),二(3)和【例2.38】11…………….【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论.【详解】因为,所以.【评注】无穷小的相关性质:(1) 有限个无穷小的代数和为无穷小;(2) 有限个无穷小的乘积为无穷小;(3) 无穷小与有界变量的乘积为无穷小. 完全类似例题和求法见文登强化班笔记《高等数学》第1讲【例1】,《数学复习指南》(经济类)第一篇【例1.43】12….【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解】,则,故.【评注】本题为基础题型. 完全类似例题见文登强化班笔记《高等数学》第2讲【例21】,《数学复习指南》(经济类)第一篇【2.20】,【例2.21】.13……..【分析】本题为二元复合函数求偏导,直接利用公式即可.【详解】利用求导公式可得,, 所以.【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性. 完全类似例题见文登强化班笔记《高等数学》第9讲【例8】, 【例9】,《数学复习指南》(经济类)第一篇【例6.16】,【例6.17】,【例6.18】.14…..【分析】本题为齐次方程的求解,可令.【详解】令,则原方程变为. 两边积分得 , 即,将代入左式得 , 故满足条件的方程的特解为 ,即,.【评注】本题为基础题型. 完全类似例题见文登强化班笔记《高等数学》第7讲【例2】, 【例3】,《数学复习指南》(经济类)第一篇【例9.3】.15………【分析】先将求出,然后利用定义判断其秩.【详解】.【评注】本题为基础题型. 矩阵相关运算公式见《数学复习指南》(经济类)第二篇第二章第1节中的知识点精讲。
