
勾股定理与面积中考试题荟萃.doc
3页勾股定理典型练习题1、 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) A、90 B、100 C、110 D、121 2、 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是( ) A、13 B、26 C、47 D、94 4题3题2题 3、 如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( ) A、 B、 C、 D、4、 如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为( ) A、 4 B、6 C、16 D、55 5、 如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则( ) A. S1=S2 B.S1<S2 C.S1>S2 D.无法确定 6.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为_____。
7.如图,以AB为直径画一个大半圆,BC=2AC,分别以AC,CB为直径在大半圆内部画两个小半圆,那么阴影部分的面积与大半圆面积的比等于 ______8.如图,直角三角形ABC中,∠ABC=90°,AB=6,以AB为直径画半圆,若阴影部分的面积S1-S2= ,则BC= _____9、如图,Rt△ABC中,∠ACB=90°.在AB的同侧分别以AB、BC、AC为直径作三个半圆.图中阴影部分的面积分别记作为S1和S2.(1)求证:S1+S2=S△ABC; (2) 若Rt△ABC的周长是 ,斜边长为2,求图中阴影部分面积的和. 10、(1)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为 ________请说明理由2)如图,在梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA、BC、DC为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间数量的关系是( ) A.S1+S2=S3 B、S1+S2=S3 C、S1+S2=S3 D、S1+S2=S3 11、(a)如图(1)分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示 S1、S2、S3则它们有 _________关系;(b)如图(2)分别以直角三角形ABC三边向外作三个正方形,其面积表示 S1、S2、S3.则它们有 _________关系;(c)如图(3)分别以直角三角形ABC三边向外作三个正三角形,面积表示S1、S2、S3,则它们有 _________关系,并选择其中一个命题证明. 12、已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所对的边分别记作a、b、c.(1)如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有S1+S2=S3;(2)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分别记作S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;(3)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2、S3,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;(4)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积. 13、如图,在等腰直角△ABC的斜边AB上取两点M、N(不与A、B重合)使∠MCN=45°,记AM=m,MN=x,NB=n,试判断以x、m、n为边长的三角形的形状,并给予说明. 14、 已知a,b,c为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状. 15、 小强家有一块三角形菜地,量得两边长分别为40m,50m,第三边上的高为30m.请你帮小强计算这块菜地的面积.(结果保留根号) 1。
