
2023年人教版初中数学代数部分知识点总结.docx
6页一、实数的分类:1、有理数:任何一个有理数总可以写成(分数)的形式2、无理数:开不尽的方根,如、;特定结构的无限不限环小数,如1.001……;特定意义的数,如π、°等二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数1)实数a的相反数是 -a; (2)a和b互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是;(2)a和b 互为倒数;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表达这个数的点到原点的距离3)去掉绝对值符号(化简),先(正、负)确认,再去掉绝对值符号4、n次方根(1)平方根,算术平方根:设a≥0,称叫a的平方根,叫a的算术平方根2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根3)立方根:叫实数a的立方根4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴2、数轴上的点和实数的相应关系:数轴上的每一个点都表达一个实数,而每一个实数都可以用数轴上的唯一的点来表达。
实数和数轴上的点是一一相应的关系四、实数大小的比较1、在数轴上表达两个数,右边的数总比左边的数大2、正数大于0;负数小于0;正数大于一切负数;用减法拟定五、实数的运算1、加法:2、减法:减去一个数等于加上这个数的相反数3、乘法:(1)同号取正,异号取负,并把绝对值相乘2)n个实数相乘,有一个因数为0,积就为0;(3)乘法可使用乘法互换律、乘法结合律、乘法分派律4、除法:除以一个数等于乘以这个数的倒数0除以任何数都等于0,0不能做被除数5、乘方与开方:乘方与开方互为逆运算6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,假如没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低档的运算,有括号的先算括号里的运算无论何种运算,都要注意先定符号后运算六、有效数字和科学记数法1、科学记数法:设N>0,则N= a×(其中1≤a<10,n为整数)2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字精确度的形式有两种:(1)精确到那一位;(2)保存几个有效数字代数部分第二章:代数式一、代数式二、整式的有关概念及运算1、概念(1)单项式:像x、7、,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数单项式的系数:单项式中的数字因数叫单项式的系数2)多项式:几个单项式的和叫做多项式多项式的项:多项式中每一个单项式都叫多项式的项一个多项式具有几项,就叫几项式多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数不含字母的项叫常数项升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变 去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号 添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号 (2)整式的乘除: 幂的运算法则:其中m、n都是正整数 同底数幂相乘:;同底数幂相除:;幂的乘方:积的乘方:。
乘法公式: 平方差公式:;完全平方公式:,三、因式分解 1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解 2、常用的因式分解方法: (1)提取公因式法: (2)运用公式法:平方差公式:;完全平方公式:(3)十字相乘法:(4)运用求根公式法:若的两个根是、,则有:3、因式分解的一般环节:(1)假如多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法四、分式 1、分式定义:形如的式子叫分式,其中A、B是整式,且B中具有字母 (1)分式无意义:B=0时,分式无意义; B≠0时,分式故意义 (2)分式的值为0:A=0,B≠0时,分式的值等于0 (3)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式分式运算的最终结果若是分式,一定要化为最简分式 2、分式的基本性质: (1);(2) (3)分式的变号法则:分式的分子,分母与分式自身的符号,改变其中任何两个,分式的值不变 五、二次根式 1、二次根式的概念:式子叫做二次根式。
(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式 (2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式 (3)分母有理化:把分母中的根号化去叫做分母有理化 (常用的有理化因式有:与;与) 2、二次根式的性质: (1) ;(2);(3)(a≥0,b≥0);(4) 代数部分第三章:方程和方程组一、方程有关概念 1、方程:具有未知数的等式叫做方程 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,具有一个未知数的方程的解也叫做方程的根 3、解方程:求方程的解或方判断方程无解的过程叫做解方程 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根 二、一元方程 1、一元一次方程 (1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0) 2、一元二次方程 (1)一元二次方程的一般形式:(其中x是未知数,a、b、c是已知数,a≠0) (2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法 (3)一元二次方程的根的判别式: 当Δ>0时方程有两个不相等的实数根; 当Δ=0时方程有两个相等的实数根; 当Δ< 0时方程没有实数根,无解; 当Δ≥0时方程有两个实数根 (5)一元二次方程根与系数的关系: 若是一元二次方程的两个根,那么:, 三、分式方程 (1)定义:分母中具有未知数的方程叫做分式方程。
(2)分式方程的解法: 一般解法:去分母法,方程两边都乘以最简公分母 (3)检查方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检查 四、方程组一次方程组: (1)二元一次方程组: 一般形式:(不全为0) 解法:代入消远法和加减消元法 解的个数:有唯一的解,或无解,当两个方程相同时有无数的解 (2)三元一次方程组: 解法:代入消元法和加减消元法二元二次方程组: (1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组 (2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组代数部分第四章:列方程(组)解应用题知识点:一、列方程(组)解应用题的一般环节 1、审题: 2、设未知数; 3、找出相等关系,列方程(组); 4、解方程(组); 5、检查,作答; 二、列方程(组)解应用题常见类型题及其等量关系; 1、工程问题 (1)基本工作量的关系:工作量=工作效率×工作时间 (2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量 (3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题 2、行程问题 (1)基本量之间的关系:路程=速度×时间 (2)常见等量关系: 相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快): 同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=本来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程 3、水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度–水流速度4、增长率问题:常见等量关系:增长后的量=本来的量+增长的量;增长的量=本来的量×(1+增长率);5、数字问题:基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100三、列方程解应用题的常用方法1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系。
2、线示法:就是用同一直线上的线段表达应用题中的数量关系,然后根据线段长度的内在联系,找出等量关系3、列表法:就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系4、图示法:就是运用图表达题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助我们更好地理解题意代数部分第五章:不等式及不等式组知识点:一、不等式与不等式的性质 1、不等式:表达不等关系的式子表达不等关系的常用符号:≠,<,>) 2、不等式的性质:(1)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0ac<bc. 二、不等式(组)的解、解集、解不等式 1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解 不等式的所有解的集合,叫做这个不等式的解集 不等式组中各个不等式的解集的公共部分叫做不等式组的解集 2.求不等式(组)的解集的过程叫做解不等式(组) 三、不等式(组)的类型及解法 1、一元一次不等式: (l)概念:具有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式 (2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。
2、一元一次不等式组: (l)概念:具有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组 (2)解法:先求出各不等式的解集,再拟定解集的公共部分 注:求不等式组的解集一般借助数轴求解较方便第六章:函数及其图像知识点:一、平面直角坐标系 1.关于坐标轴、原点对称的点的坐标的特性: (1)点P(a, b)关于x轴的对。












