好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

22平面与平面平行的性质1.docx

1页
  • 卖家[上传人]:re****.1
  • 文档编号:463890898
  • 上传时间:2023-07-02
  • 文档格式:DOCX
  • 文档大小:49.43KB
  • / 1 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第15讲平面与平面平行的性质o学习目标:通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的性质,掌握面面平行的性质定理,灵活运用面面平行的判定定理和性质定理,掌握“线线”“线面”“面面”平行的转化.o知识要点:1.面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.用符号语言表示为:://;a,b=a//b.2.其它性质:①:•//一:,1二:£门〃一:;②〉II〔.一一I_一:;③夹在平行平面间的平行线段相等O例题精讲:【例1】如图,设平面a//平面B,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C€a,B、D.求证:MN//a.证明:连接BC,取BC的中点E,分别连接ME、NE,贝UME//AC,:ME//平面a,又NE//BD,•••NE//3,又MEnNE=E,•平面MEN//平面a,•/MN平面MEN,•MN//a.【例2】如图,A,B,C,D四点都在平面:•,1外,它们在:•内的射影几,B!,Ci,行四边形的四个顶点,在呐的射影A2,B2,C2,D2在一条直线上,求证:ABCD是平行四边形.证明:TA,B,C,D四点在[内的射影A2,B2,C2,D2在一条直线上,• A,B,C,D四点共面.又A,B,C,D四点在「内的射影Ai,Bi,&,Di是平行四边形的四个顶点,•平面ABBiAi/平面CDDiCi-• AB,CD是平面ABCD与平面ABBiAi,平面CDDiCi的交线.• AB//CD.同理AD//BC.•四边形ABCD是平行四边形.【例3】如图,在正三棱柱ABC—AiBiCi中,E、F、G是侧面对角线上的点,且BE二CF二AG,求证:平面EFG//平面ABC.证明:作EP_BBt于P,连接PF.在正三棱柱ABC—AiBiCi的侧面ABBiAi中,八BEBP易知AB_BBi,又田_BBi,所以EP//AiBi//AB.•,EP//平面ABC.BABBiCFbp又•••BE二CF,BA,二CB,,•,•PF//BC,则PF//平面ABC.cb,bb,•/EP「|PF=P,•平面PEF〃平面ABC.•••EF二平面PEF,•EF〃平面ABC.同理,GF//平面ABC.•••EF“GF二F,•平面EFG//平面ABC.R点评:将空间问题转化为平面问题,是解决立体几何问题的重要策略,关键在于选择或添加适当的平面或线,并抓住一些平面图形的几何性质,如比例线段等.此题通过巧作垂线,得到所作平面与底面平行,由性质-//[|二:;-1〃1易得线面平行,进而转化岀待证的面面平行,突出了平行问题中转化思想【例4】如图,已知正方体ABCD-ABCiDi中,面对角线ABi,BCi上分别有两点E、F,且B,E二GF.求证:EF//平面ABCD.证明:过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连接MN.•/BB」平面ABCD,•BB,!AB,BB,丄BC,•EM//BB,,FN//BB,,•EM//FN,•••AB,=BCi,B,E=CiF,•AE=BF,又/BiAB=/CiBC=45°,•RtAAME幻RtABNF,•EM=FN.•四边形MNFE是平行四边形,•EF//MN.又MN二平面ABCD,•EF//平面ABCD.N证法二:过E作EG//AB交BBi于G,连接GF,B1EB’GGFB’G…•••二-,B^^GF,BJrCiB,•••」-,•••FGIIB1C1//BC.BiABBCiBBiB又•••EGFG=G,AB「|BC=B,•平面EFGI平面ABCD.b又EF平面EFG,•EFI平面ABCD.点评:在熟知线面平行、面面平行的判定与性质之后,空间平行问题的证明,紧紧抓住“线线平行:二线面平行:二面面平行”之间的互相转化而完成证明。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.