好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

厦门大学《应用多元统计分析》第02章多元正态分布的参数估计3研究报告.ppt

63页
  • 卖家[上传人]:youn****329
  • 文档编号:269804487
  • 上传时间:2022-03-23
  • 文档格式:PPT
  • 文档大小:934.50KB
  • / 63 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第二章 多元正态分布的参数估计第一节 引言 第二节 基本概念第三节 多元正态分布第四节 多元正态分布的参数估计第五节 多元正态分布参数估计的 实例与计算机实现第一节 引言 n多元统计分析涉及到的都是随机向量或多个随机向量放在一起组成的随机矩阵例如在研究公司的运营情况时,要考虑公司的获利能力、资金周转能力、竞争能力以及偿债能力等财务指标;又如在研究国家财政收入时,税收收入、企业收入、债务收入、国家能源交通重点建设基金收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等都是需要同时考察的指标显然,如果我们只研究一个指标或是将这些指标割裂开分别研究,是不能从整体上把握研究问题的实质的,解决这些问题就需要多元统计分析方法为了更好的探讨这些问题,本章我们首先论述有关随机向量的基本概念和性质n在实用中遇到的随机向量常常是服从正态分布或近似正态分布,或虽本身不是正态分布,但它的样本均值近似于正态分布因此现实世界中许多实际问题的解决办法都是以总体服从正态分布或近似正态分布为前提的在多元统计分析中, 多元正态分布占有很重要地位,本书所介绍的方法大都假定数据来之多元正态分布为此,本章将要介绍多元正态分布的定义和有关性质。

      n 然而在实际问题中,多元正态分布中均值向量和协差阵通常是未知的,一般的做法是由样本来估计这是本章讨论的重要内容之一,在此我们介绍最常见的最大似然估计法对参数进行估计,并讨论其有关的性质一、随机向量n我们所讨论的是多个变量的总体,所研究的数据是同时p个指标(变量),又进行了n次观测得到的,我们把这个p指标表示为X1 ,X2,Xp,常用向量X = (X1 , X2 , , XP)n表示对同一个体观测的p个变量这里我们应该强调,在多元统计分析中,仍然将所研究对象的全体称为总体,它是由许多(有限和无限)的个体构成的集合,如果构成总体的个体是具有p个需要观测指标的个体,我们称这样的总体为p维总体(或p元总体)上面的表示便于人们用数学方法去研究p维总体的特性这里“维”(或“元”)的概念,表示共有几个分量若观测了n个个体,则可得到如表2.1的数据,称每一个个体的p个变量为一个样品,而全体n个样品组成一个样本 n n 二、多元分布n n n n n n n n n n n n 三、随机向量的数字特征 n n n n n n n n 第三节 多元正态分布一 多元正态分布的定义 二 多元正态分布的性质 一、多元正态分布的定义n n n n n 二、多元正态分布的性质 n n n n 第四节 多元正态分布的参数估 计 一 多元样本的数字特征 二 均值向量与协差阵的最大似然估计 三 Wishart分布 一、多元样本的数字特征 n n n 二、均值向量与协差阵的最大似然 估计 n n n n n n n 三、Wishart分布n n n n n 第五节 多元正态分布参数估计 的实例与计算机实现 一 均值向量的估计二 协差阵的估计 n通过上面的理论分析知道,多元正态总体均值向量和协差阵的最大似然估计分别是样本均值向量和样本协差阵。

      利用SPSS软件可以迅速地计算出多元分布的样本均值向量、样本离差阵和样本协差阵下面通过一个实例来说明多元正态分布参数估计的SPSS实现过程n从沪深两市上市公司中随机抽取300家公司,取其三个反映收益情况的三个财务指标:每股收益率(eps)、净资产收益率(roe)和总资产收益率(roa)现要求对这三个指标的均值和协差阵进行估计一、均值向量的估计n在SPSS中计算样本均值向量的步骤如下:1. 选择菜单项AnalyzeDescriptive StatisticsDescriptives,打开Descriptives对话框,如图2.1将待估计的三个变量移入右边的Variables列表框中图2.1 Descriptives对话框2. 单击Options按钮,打开Options子对话框,如图2.2所示在对话框中选择Mean复选框,即计算样本均值向量单击Continue按钮返回主对话框图2.2 Options子对话框3. 单击OK按钮,执行操作则在结果输出窗口中给出样本均值向量,如表2.2即样本均值向量为(0.175,0.044,0.026)表2.2 样本均值向量二、协差阵的估计n在SPSS中计算样本协差阵的步骤如下:1. 选择菜单项AnalyzeCorrelateBivariate,打开Bivariate Correlations对话框,如图2.3。

      将三个变量移入右边的Variables列表框中 图2.3 Bivariate Correlations对话框2. 单击Options按钮,打开Options子对话框,如图2.4选择Cross-product deviations and covariances复选框,即计算样本离差阵和样本协差阵单击Continue按钮,返回主对话框图2.4 Options子对话框3. 单击OK按钮,执行操作则在结果输出窗口中给出相关分析表表中Pearson Correlation给出皮尔逊相关系数矩阵,Sum of Squares and Cross-products给出样本离差阵,Covariance给出样本协差阵n值得注意的是,这里给出的样本协差阵是S/(n-1) ,而不是S/n 表2.3 样本相关系数矩阵、离差阵与协差阵本章结束。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.