第十五章 定义和诊断检验.docx
3页第十五章 定义和诊断检验本章描述的每一检验过程包括假设检验的原假设定义检验指令输出包括一个或多个检验统计量样本 值和它们的联合概率值(p值)p值说明在原假设为真的情况下,样本统计量绝对值的检验统计量大于或 等于临界值的概率这样,低的p值就拒绝原假设对每一检验都有不同假设和分布结果方程对象菜单的 View 中给出三种检验类型选择来检验方程定义包括系数检验、残差检验和稳定性 检验其他检验,如单位根检验(13章)、Granger因果检验(8章)和Johansen协整检验(19章)§15.1 系数检验一、Wald检验——系数约束条件检验Wald检验没有把原假设定义的系数限制加入回归,通过估计这一无限制回归来计算检验统计量Wald 统计量计算无约束估计量如何满足原假设下的约束如果约束为真,无约束估计量应接近于满足约束条件考虑一个线性回归模型:y = X卩+ £和一个线性约束:H : R0 - r = 0,R是一个已知的q x k阶矩 0 阵,r是q维向量Wald统计量在H °下服从渐近分布咒2( q),可简写为:W = (Rb — r)'(s 2 R (X X ) -1 R ') -1(Rb — r)进一步假设误差£独立同时服从正态分布,我们就有一确定的、有限的样本F-统计量(U 'u - u'u) / qF = = W / qu u /( T - k )~是约束回归的残差向量。
F统计量比较有约束和没有约束计算出的残差平方和如果约束有效,这 两个残差平方和差异很小,F统计量值也应很小EViews显示咒2和F统计量以及相应的p值假设 Cobb-Douglas 生产函数估计形式如下:log Q = A + a log L + 0 log K + £ ( 1)Q为产出增加量,K为资本投入,L为劳动力投入系数假设检验时,加入约束a + 0 = 1为进行 Wald检验,选择 View/Coefficient Tests/Wald-Coefficient Restrictions 在编辑对话框中输入约束 条件,多个系数约束条件用逗号隔开约束条件应表示为含有估计参数和常数(不可以含有序列名)的方 程,系数应表示为c(1),c(2)等等,除非在估计中已使用过一个不同的系数向量为检验规模报酬不变a + 0 = 1的假设,在对话框中输入下列约束:c(2)+c(3)=1二、 遗漏变量检验这一检验能给现有方程添加变量,而且询问添加的变量对解释因变量变动是否有显著作用原假设H 是添加变量不显著选择 View/Coefficient Tests/Omitted Variables一Likehood Ration,在打开的对话框中,0列出检验统计量名,用至少一个空格相互隔开。
例如:原始回归为 LS log(q) c log(L) log(k) ,输 入: K L, EViews 将显示含有这两个附加解释变量的无约束回归结果,而且显示假定新变量系数为 0 的 检验统计量三、 冗余变量冗余变量检验可以检验方程中一部分变量的统计显著性更正式,可以确定方程中一部分变量系数是否为 0,从而可以从方程中剔出去只有以列出回归因子形式,而不是公式定义方程,检验才可以进行选择 View/Coefficient Tests/Redundant Vriable—likelihood Ratio,在对话框中,输入每一检验的变量名, 相互间至少用一空格隔开例如:原始回归为:Ls log(Q) c log(L) log(K) K L,如果输入K L, EViews显示去掉这两个回归因子的约束回归结果,以及检验原假设(这两个变量系数为0)的统计量§15.2 残差检验—、相关图和Q—统计量在方程对象菜单中,选择View/Residual Tests/Correlogram-Q-Statistics,将显示直到定义滞后阶数的残 差自相关性和偏自相关图和Q-统计量在滞后定义对话框中,定义计算相关图时所使用的滞后数。
如果残 差不存在序列相关,在各阶滞后的自相关和偏自相关值都接近于零所有的Q-统计量不显著,并且有大 的 P 值二、 平方残差相关图选择View/Residual Tests/Correlogram Squared Residua,在打开的滞后定义对话框,定义计算相关图的 滞后数将显示直到任何定义的滞后阶数的平方残差的自相关性和偏自相关性,且计算出相应滞后阶数的 Q-统计量平方残差相关图可以用来检查残差自回归条件异方差性(ARCH)见下面ARCH LM检验如 果残差中不存在ARCH,在各阶滞后自相关和偏自相关应为0,且Q统计量应不显著三、 直方图和正态检验选择View/Residual Tests/Histogram Normality,将显示直方图和残差的描述统计量,包括检验正态 性的Jarque-Bera统计量如果残差服从正态分布,直方图应呈钟型,J-B统计量应不显著四、 序列相关 LM 检验选择View/Residual Tests /Serial correlation LM Test定义AR或MA最高阶数这一检验可以替代 Q-统计量检验序列相关属于渐近检验(大样本)一类,被称为拉格朗日乘数(LM)检验。
与D-W统计 量仅检验AR(1)误差不同,LM检验可应用于检验高阶ARMA误差,而且不管是否有滞后因变量均可因 此,当我们认为误差可能存在序列相关时,更愿意用它来进行检验LM检验原假设为:直到p阶滞后, 不存在序列相关五、 ARCH LM检验Engle(1982)提出对残差中自回归条件异方差(Autoregressive Conditional Heteroskedasticity, ARCH)进 行拉格朗日乘数检验(Lagrange multiplier test),即 LM 检验选择 View/Residual Tests/ARCH LM Tests 进行检验,定义要检验的ARCH阶数ARCH LM检验统计量由一个辅助检验回归计算为检验原假设: 残差中直到q阶都没有ARCH运行如下回归:e2 =卩 + 卩 e2 + + 卩 e2 + vt 0 1 t-1 q t - q t式中e是残差这是一个对常数和直到q阶的滞后平方残差所作的回归F统计量是对所有滞后平方残差 联合显著性所作的检验Obs* R 2统计量是LM检验统计量,它是观测值数乘以检验回归R 2六、 White异方差性检验White (1980) 提出了对最小二乘回归中残差的异方差性的检验。
包括有交叉项和无交叉项两种检验 White 检验是检验原假设:不存在异方差性检验统计量通过一个辅助回归来计算利用回归因子所有可 能的交叉乘积对残差做回归例如:假设估计如下方程y = b + b x + b z + et 1 2 t 3 t t式中 b 估计系数, e 是残差检验统计量基于辅助回归:e2 = a + a x + a z + a x2 + a z2 + a x z + vt 0 1 t 2 t 3 t 4 t 5 t t tF 统计量是对所有交叉作用(包括常数)联合显著性的检验选择 view/Residual test/White Heteroskedasticity 进行 White's 异方差检验 EViews 对检验有两个选项: 交叉项和没有交叉项有交叉项包括所有交叉作用项但如果回归右边有许多变量,交叉项的个数会很多, 所以把它们全包括在内不实用无交叉项选项仅使用回归因子平方进行检验回归§15.3 定义和稳定性检验EViews 提供了一些检验统计量选项,它们检查模型参数在数据的不同子区间是否平稳一个推荐的 经验方法是把观测值区间T分为T1和T2两部分T1个观测值用于估计,T2个观测值用于检验和评价。
把所有样本数据用于估计,有利于形成最好的拟合,但没有考虑到模型检验,也无法检验参数不变性,估 计关系的稳定性检验预测效果要用估计时未用到的数据,建模时常用T1区间估计模型,用T2区间检验 和评价效果例如居民收入,企业的销售,或其他指标,留下一部分样本进行检验对于子区间 T1 和 T2 的相对大小,没有太明确的规则有时可能会出现明显的结构变化的转折点,例如战争,石油危机等当 看不出有转折点时,常用的经验方法是用 85%-90%的数据作估计,剩余的数据作检验 EViews 提供了现 成方法,进行这类分析很方便―、Chow分割点检验分割点Chow检验的思想是把方程应用于每一个子样本区间,看看估计方程中是否存在显著差异显 著差异说明关系中有结构变化为了进行 Chow 间断点检验,选择 View/Stability Tests/Chow Breakpoint Test...出现对话框以后,填入间断点的日期原假设:不存在结构变化二、 Chow 预测检验Chow预测检验先估计了包括-区间子样本的模型,然后用估计的模型去预测在剩余的T2区间样本的 因变量的值如果真实值和预测值差异很大,就说明模型可能不稳定。
检验适用于最小二乘法和二阶段最 小二乘法原假设为无结构变化选择View/Stability Test /Chow Forecast Test进行Chow预测检验对预 测样本开始时期或观测值数进行定义数据应在当前观测值区间内三、 RESET Test由 Ramsey (1969)提出 RESET 方法,即回归定义错误检验(Regression Specification Error Test )古 典正态线性回归模型定义如下:y = X卩+ £扰动项£服从多元正态分布N (0, Q 21)序列相关,异方 差性,£非正态分布都违反了扰动项£服从多元正态分布N (0, Q 21)的假设存在以上这样的定义错误, LS估计量会是有偏的且不一致,一般推断方法也将不适用Ramsey说明:任一或所有上述定义错误对£产 生一个非零均值向量因此,RESET检验原假设和被选假设为:H : £ ~ N (0,o 21);0H : £ - N (卩,Q 21)(卩工0 )检验基于一个扩展回归方程:y = x卩+ z Y + £建立检验的关键问题是 决定什么变量应记入z矩阵oRamsey建议把因变量预测值的乘方(这是解释变量乘方和互乘项的线性组合) 计入z,特别的,建议:z = [y 2, y 3,……]。
y是y对X回归的拟合值向量上标说明乘方阶数一阶没 有包括在内,因为它与X矩阵完全共线性选择 View/stability tests/Ramsey RESET test 进行检验,定义检验回归中要包括的拟合项数拟合项是 原始回归方程拟合值的乘方如果定义一个很大的拟合项数,EViews将显示一个近似奇异矩阵误差信息, 这是因为拟合项的乘方很可能高度共线Ramsey RESET检验仅应用于LS估计的方程四、 递归最小二乘法在递归最小二乘法中,方程使用样本数据大子区间进行重复估计如果在向量b中有k个系数要估计, 那么前k个观测值就被用于形成对b的第一次估计这一估计重复进行,直到T个样本点都被使用,产生 对b向量的T-k+1个估计值在每一步中,b的最后一个估计值可以用来预测因变量的下一个值这一预 测过程的一步超前预测误差,被定义为递归误差选择View/stability tests/Recursive Estimate(OLS only)计 算递归残差,递归估计仅适用于没有AR和MA项的OLS估计方程如果模型有效,递归残差将独立且服 从零均值,常数方差的正态分布。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


