
二次函数y=ax2的图像及性质1(2).ppt
6页1、抛物线、抛物线y=ax2的顶点是原点,对称轴是的顶点是原点,对称轴是y轴2、当、当a>0时,抛物线时,抛物线y=ax2在在x轴的上方(除顶点外),它的开口向上,并且轴的上方(除顶点外),它的开口向上,并且 向上无限伸展;向上无限伸展; 当当a<0时,抛物线时,抛物线y=ax2在在x轴的下方(除顶点外),它的开口向下,并且轴的下方(除顶点外),它的开口向下,并且 向下无限伸展向下无限伸展3、当、当a>0时,在对称轴的左侧,时,在对称轴的左侧,y随着随着x的增大而减小;的增大而减小;在对称轴右侧,在对称轴右侧,y随着随着x的增大而增大当的增大而增大当x=0时函数时函数y的值最小的值最小当当a<0时,在对称轴的左侧,时,在对称轴的左侧,y随着随着x的增大而增大;的增大而增大;在对称轴的右侧,在对称轴的右侧,y随着随着x增大而减小,当增大而减小,当x=0时,函数时,函数y的值最大的值最大二次函数y=ax2的性质2 2、根据左边已画好的函数图象填空、根据左边已画好的函数图象填空:(1)抛物线)抛物线y=2x2的顶点坐标是的顶点坐标是 ,对称轴是对称轴是 ,,在在 侧,侧,y随着随着x的增大而增大;在的增大而增大;在 侧,侧,y随着随着x的增大而减小,当的增大而减小,当x= 时,时,函数函数y的值最小,最小值是的值最小,最小值是 ,抛物抛物线线y=2x2在在x轴的轴的 方(除顶点外)。
方(除顶点外)2))抛物线抛物线 在在x轴的轴的 方(除顶点外),在对称轴的方(除顶点外),在对称轴的左侧,左侧,y随着随着x的的 ;;在对称轴的右侧,在对称轴的右侧,y随着随着x的的 ,当,当x=0时,时,函数函数y的值最大,最大值是的值最大,最大值是 ,,当当x 0时,时,y<0.((0,,0))y轴轴对称轴的右对称轴的右对称轴的左对称轴的左00上上下下增大而增大增大而增大增大而减小增大而减小04、已知抛物线、已知抛物线y=ax2经过点经过点A((-2,,-8) ((1))求此抛物线的函数解析式;求此抛物线的函数解析式; ((2)判断点)判断点B((-1,,- 4))是否在此抛物线上是否在此抛物线上 ((3)求出此抛物线上纵坐标为)求出此抛物线上纵坐标为-6的点的坐标的点的坐标3)由)由-6=-2x2 ,得得x2=3, 所以纵坐标为所以纵坐标为-6的点有两个,它们分别是的点有两个,它们分别是 y=-2x2我有哪些收获呢?我有哪些收获呢?与大家共分享!与大家共分享!学学 而而 不不 思思 则则 罔罔回回头头一一看看,,我我想想说说……还有什么疑问吗还有什么疑问吗? ?。
