
00034.2008年数学中考试题分类汇编(函数与几何图形1).doc
31页2008年中考试卷分类---函数与几何图形1. 如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是( D )2. 如图,已知正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是( C )3. (潍坊)如图,圆B切y轴于原点O,过定点作圆B切线交圆于点P.已知,抛物线C经过A,P两点.(1)求圆B的半径;(2)若抛物线C经过点B,求其解析式;(3)投抛物线交y轴于点M,若三角形APM为直角三角形,求点M的坐标. 4. (威海)如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积; (2)求四边形MEFN面积的最大值. (3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由. 解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ∵ AB∥CD, ∴ DG=CH,DG∥CH. ∴ 四边形DGHC为矩形,GH=CD=1. CDABEFNMGH∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,∴ △AGD≌△BHC(HL). ∴ AG=BH==3. ………2分 ∵ 在Rt△AGD中,AG=3,AD=5, ∴ DG=4. ∴ . CDABEFNMGH(2)∵ MN∥AB,ME⊥AB,NF⊥AB, ∴ ME=NF,ME∥NF. ∴ 四边形MEFN为矩形. ∵ AB∥CD,AD=BC, ∴ ∠A=∠B. ∵ ME=NF,∠MEA=∠NFB=90°, ∴ △MEA≌△NFB(AAS).∴ AE=BF. 设AE=x,则EF=7-2x. ∵ ∠A=∠A,∠MEA=∠DGA=90°, ∴ △MEA∽△DGA.∴ .∴ ME=. ∴ . 当x=时,ME=<4,∴四边形MEFN面积的最大值为. (3)能. 由(2)可知,设AE=x,则EF=7-2x,ME=. 若四边形MEFN为正方形,则ME=EF. 即 7-2x.解,得 . ∴ EF=<4. ∴ 四边形MEFN能为正方形,其面积为.5. (青岛)已知:如图①,在RtΔABC中,∠C=900,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0 解: (1)① ,,S梯形OABC=12 ②当时,直角梯形OABC被直线扫过的面积=直角梯形OABC面积-直角三角开DOE面积 (2) 存在 …(每个点对各得1分) 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二:① 以点D为直角顶点,作轴 设.(图示阴影),在上面二图中分别可得到点的生标为P(-12,4)、P(-4,4)E点在0点与A点之间不可能;② 以点E为直角顶点 同理在②二图中分别可得点的生标为P(-,4)、P(8,4)E点在0点下方不可能.③ 以点P为直角顶点同理在③二图中分别可得点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4),E点在A点下方不可能.综上可得点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-,4)、P(8,4)、P(4,4).8. (大连)如图24-1,抛物线y=x2的顶点为P,A、B是抛物线上两点,AB∥x轴,四边形ABCD为矩形,CD边经过点P,AB = 2AD.⑴求矩形ABCD的面积;⑵如图24-2,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形ABCD的面积;⑶若将抛物线“y=x2+bx+c”改为抛物线“y=ax2+bx+c”,其他条件不变,请猜想矩形ABCD的面积(用a、b、c表示,并直接写出答案).附加题:若将24题中“y=x2”改为“y=ax2+bx+c”,“AB = 2AD”条件不要,其他条件不变,探索矩形ABCD面积为常数时,矩形ABCD需要满足什么条件?并说明理由. 9. (东莞)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.(2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围. (1),, 等腰; (2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分) ①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)②△ABD∽△EAD,△ABD∽△EBC;(有2对)③△BAC∽△EAD,△BAC∽△EBC;(有2对)所以,一共有9对相似三角形. K(3)由题意知,FP∥AE, ∴ ∠1=∠PFB,又∵ ∠1=∠2=30°, ∴ ∠PFB=∠2=30°,∴ FP=BP.…………………………6分过点P作PK⊥FB于点K,则.∵ AF=t,AB=8,∴ FB=8-t,.在Rt△BPK中,. ∴ △FBP的面积,∴ S与t之间的函数关系式为: ,或. t的取值范围为:.10. (大连) 如图,△ABC的高AD为3,BC为4,直线EF∥BC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.⑴求线段AG(用x表示);⑵求y与x的函数关系式,并求x的取值范围.11. (金华)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. (1)如图,过点B作BE⊥y轴于点E,作BF⊥x 轴于点F.由已知得BF=OE=2, OF= = ∴点B的坐标是( ,2) ……(1分)设直线AB的解析式是y=kx+b,则有 解得 ……(2分)∴直线AB的解析式是y= x+4 ……(1分)(2) 。












