
2023学年济宁市重点中学数学八年级第一学期期末达标测试试题含解析.doc
15页2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一个等腰三角形的两边长分别为3、7,则它的周长为( )A.17 B.13或17 C.13 D.102.在中,无理数的个数是( )A.2个 B.3个 C.4个 D.5个3.如果把分式中的、的值都扩大为原来的2倍,那么分式的值( )A.扩大为原来的2倍 B.缩小为原来的一半C.扩大为原来的4倍 D.保持不变4.如图,,的平分线与的平分线相交于点,作于点,若,则点到与的距离之和为( ).A. B. C. D.5.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为( )A.8 B.9 C. D.106.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=( )A.80° B.60° C.50° D.40°7.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是( )A.m<﹣1 B.m>﹣1 C.m>0 D.m<08.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是( )A. B.C. D.9.若am=8,an=16,则am+n的值为( )A.32 B.64 C.128 D.25610.下列图案不是轴对称图形的是( )A. B. C. D.11.下列说法正确的是( )A.的立方根是 B.﹣49的平方根是±7C.11的算术平方根是 D.(﹣1)2的立方根是﹣112.已知多边形的每一个外角都是72°,则该多边形的内角和是( )A.700° B.720° C.540° D.1080°二、填空题(每题4分,共24分)13.若将进行因式分解的结果为,则=_____.14.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .15.点和关于轴对称,则_____.16.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.17.如图,已知△ABC中, ∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=______度.18.在8×8的格子纸上,1×1小方格的顶点叫做格点.△ABC 的三个顶点都是格点(位置如图).若一个格点P使得△PBC与△PAC的面积相等,就称P点为“好点”.那么在这张格子纸上共有_____个“好点”.三、解答题(共78分)19.(8分)用简便方法计算:(1) (2)20.(8分)已知一次函数的表达式是y=(m-4)x+12-4m(m为常数,且m≠4)(1)当图像与x轴交于点(2,0)时,求m的值;(2)当图像与y轴的交点位于原点下方时,判断函数值y随着x的增大而变化的趋势;(3)在(2)的条件下,当函数值y随着自变量x的增大而减小时,求其中任意两条直线与y轴围成的三角形面积的取值范围.21.(8分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,该服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.请问该服装商第一批进货的单价是多少元?22.(10分)某地长途汽车公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票,行李票元是行李质量的一次函数,如图所示:(1)求与之间的表达式(2)求旅客最多可免费携带行李的质量是多少?23.(10分)化简:(1); (2).24.(10分)如图,在五边形ABCDE中满足 AB∥CD,求图形中的x的值.25.(12分)化简求值:,其中,x=2+.26.如图,某小区有一块长为(3a+b)米,宽为(a+3b)米的长方形空地,计划在中间边长(a+b)米的正方形空白处修建一座文化亭,左边空白部分是长为a米,宽为米的长方形小路,剩余阴影部分用来绿化.(1)请用含a、b的代数式表示绿化面积S(结果需化简);(2)当a=30,b=20时,求绿化面积S.参考答案一、选择题(每题4分,共48分)1、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.2、A【分析】根据立方根、无理数的定义即可得.【详解】是无理数,,是无限循环小数,属于有理数,是有限小数,属于有理数,,小数点后的是无限循环的,是无限循环小数,属于有理数,综上,无理数的个数是2个,故选:A.【点睛】本题考查了立方根、无理数的定义,掌握理解无理数的定义是解题关键.3、D【分析】根据分式的基本性质,求得x,y的值均扩大为原来的2倍式子的值,与原式比较即可求解.【详解】把分式中的、的值都扩大为原来的2倍,可得,;∴把分式中的、的值都扩大为原来的2倍,分式的值不变.故选D.【点睛】本题考查了分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.4、D【解析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.【详解】过作,,由题意知平分,∴,同理,∴.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,平行线间的距离的定义,熟记性质并作辅助线构造出AD、BC间的距离的线段是解题的关键.5、C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=AB×AC=BC×AD,∴AD=.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.6、D【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.7、A【解析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【点睛】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.8、A【分析】根据轴对称的性质和线段的性质即可得到结论.【详解】解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A 符合要求,故选:A.【点睛】本题考查轴对称的性质的运用,最短路线问题数学模式的运用,也考查学生的作图能力,运用数学知识解决实际问题的能力.9、C【分析】逆用同底数幂的乘法公式可得,再整体代入求值即可.【详解】当am=8,an=16时,,故选C.【点睛】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10、C【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、是轴对称图形,不合题意; B、是轴对称图形,不合题意; C、不是轴对称图形,符合题意; D、是轴对称图形,不合题意; 故选C.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.11、C【详解】解:A、的立方根是:,故此选项错误;B、﹣49没有平方根,故此选项错误;C、11的算术平方根是,正确;D、的立方根是1,故此选项错误;故选C.【点睛】本题考查一个正数有两个平方根,这两个平方根互为相反数,其中正的平方根叫做算术平方根.12、C【分析】由题意可知外角和是360°,除以一个外角度数即为多边形的边数,再根据多边形的内角和公式可求得该多边形的内角和.【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:5,∴该多边形的内角和为:(5﹣2)×180°=540°.故选:C.【点睛】本题考查多边形的内外角和,用到的知识点为:多边形的边数与外角的个数的关系;n边形的内角和公式为(n-2)×180°.二、填空题(每题4分,共24分)13、-1【分析】将(3x+1)(x-1)展开,则3x1-mx+n=3x1-x-1,从而求出m、n的值,进一步求得mn的值.【详解】解:∵(3x+1)(x-1)=3x1-x-1,∴3x1-mx+n=3x1-x-1,∴m=1,n=-1,∴mn=-1.故答案为-1.【点睛】本题考查了因式分解的应用,知道因式分解前后两式相等是解题的关键.14、1.5×10-1【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣1,故答案为1.5×10﹣1.考点:科学记数法—表示较小的数.15、【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”计算即可.【详解】∵点和关于轴对称,∴,,解得:,,则.故答案为:.【点睛】本题主要考查了关于x轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:①关于x轴对称的点,横坐标相同,纵坐标互为相反数;②关于y轴对称的点,纵坐标相同,横坐标互为相反数;③关于原点对称的点,横坐标与纵坐标都互为相反数16、5【解析】试题解析:如图, 在Rt△OAB中, ∵OA=4千米,OB=3千米,∴千米.所以甲、乙两人相距5千米.故答案为5.17、25【详解】根据三角形的外角的性质可得∠ACE=∠ABC+∠A, ∠DCE=∠DBC+∠D,又因为BD,CD是∠ABC的平分线与∠ACE的平分线,所以∠ACE=2∠DCE,∠A。












