
2011年重庆市高考数学试卷(理科).doc
38页2011年重庆市高考数学试卷(理科) 2011年重庆市高考数学试卷(理科) 一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2011•重庆)复数=( ) A.B.C.D. 2.(3分)(2011•重庆)“x<﹣1”是“x2﹣1>0”的( ) A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 3.(3分)(2011•重庆)已知,则a=( ) A.1B.2C.3D.6 4.(3分)(2011•重庆)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=( ) A.6B.7C.8D.9 5.(3分)(2011•重庆)下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是( ) A.(﹣∞,1]B.C.D.(1,2) 6.(3分)(2011•重庆)若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为( ) A.B.C.1D. 7.(3分)(2011•重庆)已知a>0,b>0,a+b=2,则的最小值是( ) A.B.4C.D.5 8.(3分)(2011•重庆)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( ) A.B.C.D. 9.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( ) A.B.C.1D. 10.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为( ) A.﹣8B.8C.12D.13 二、填空题(共5小题,每小题3分,满分15分)11.(3分)(2011•重庆)在等差数列{an}中,a3+a7=37,则a2+a4+a6+a8= _________ . 12.(3分)(2011•重庆)已知单位向量,的夹角为60°,则|2﹣|= _________ . 13.(3分)(2011•重庆)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为 _________ . 14.(3分)(2011•重庆)已知sinα=+cosα,且α∈(0,),则的值为 _________ . 15.(3分)(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点 _________ . 三、解答题(共6小题,满分75分)16.(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值. 17.(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望. 18.(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值. 19.(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值. 20.(12分)(2011•重庆)如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.(Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由. 21.(12分)(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤ak≤. 2011年重庆市高考数学试卷(理科)参考答案与试题解析 一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2011•重庆)复数=( ) A.B.C.D.考点:复数代数形式的混合运算.1706460专题:计算题.分析:利用i的幂的运算法则,化简分子,然后复数的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可.解答:解:复数====故选C点评:题考查复数代数形式的混合运算,考查计算能力,是基础题. 2.(3分)(2011•重庆)“x<﹣1”是“x2﹣1>0”的( ) A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.1706460专题:计算题.分析:由x<﹣1,知x2﹣1>0,由x2﹣1>0知x<﹣1或x>1.由此知“x<﹣1”是“x2﹣1>0”的充分而不必要条件.解答:解:∵“x<﹣1”⇒“x2﹣1>0”,“x2﹣1>0”⇒“x<﹣1或x>1”.∴“x<﹣1”是“x2﹣1>0”的充分而不必要条件.故选A.点评:本题考查充分条件、必要条件和充要条件的应用,解题时要注意基本不等式的合理运用. 3.(3分)(2011•重庆)已知,则a=( ) A.1B.2C.3D.6考点:极限及其运算.1706460专题:计算题.分析:先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.解答:解:原式==(分子分母同时除以x2)===2∴a=6故答案选D.点评:关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧. 4.(3分)(2011•重庆)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=( ) A.6B.7C.8D.9考点:二项式系数的性质.1706460专题:计算题.分析:利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x5与x6的系数,列出方程求出n.解答:解:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故选B点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题. 5.(3分)(2011•重庆)下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是( ) A.(﹣∞,1]B.C.D.(1,2)考点:对数函数的单调性与特殊点.1706460分析:根据零点分段法,我们易将函数f(x)=|lg(2﹣x)|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论.解答:解:∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D点评:本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键. 6.(3分)(2011•重庆)若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为( ) A.B.C.1D.考点:余弦定理的应用.1706460专题:计算题.分析:将已知的等式展开;利用余弦定理表示出a2+b2﹣c2求出ab的值.解答:解:∵(a+b)2﹣c2=4,即a2+b2﹣c2+2ab=4,由余弦定理得2abcosC+2ab=4,∵C=60°,∴,故选A.点评:本题考查三角形中余弦定理的应用. 7.(3分)(2011•重庆)已知a>0,b>0,a+b=2,则的最小值是( ) A.B.4C.D.5考点:基本不等式.1706460专题:计算题.分析:利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.解答:解:∵a+b=2,∴=1∴=()()=++≥+2=(当且仅当b=2a时等号成立)故选C点评:本题主要考查了基本不等式求最值.注意把握好一定,二正,三相等的原则. 8.(3分)(2011•重庆)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( ) A.B.C.D.考点:圆的标准方程;两点间的距离公式.1706460专题:数形结合.分析:把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,然后利用AC与BD的乘积的一半即可求出四边形ABCD的面积.解答:解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣3)2=10,则圆心坐标为(1,3),半径为,根据题意画出图象,如图所示:由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=2,MB=,ME==,所以BD=2BE=2=2,又AC⊥BD,所以四边形ABCD的面积S=AC•BD=×2×2=10.故选B点评:此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.学生做题时注意对角线垂直的四边形的面积等于对角线乘积的一半. 9.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( ) A.B.C.1D.考点:点、线、面间的距离计算;球内接多面体.1706460专题:计算题;压轴题.分析:由题意可知ABCD所在的圆是小圆,对角线长为 ,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABC。












