
2023年角平分线的性质精品讲义.pdf
12页1 第十一章 角平分线的性质 一 学习目标 1. 了解角是轴对称图形和角平分线的定义,会用尺规作一个角的平分线; 2. 掌握角平分线的性质和判定; 3. 综合应用角的平分线的性质和判定解决相关问题 二 重点、难点 重点:角平分线的性质和判定 难点:角平分线的性质和判定的综合应用 三 考点分析 对角平分线的定义及角平分线的作法进行单独命题在中考中是比较少见的,但这两个知识点属于基础知识,出题者往往将其与线段的垂直平分线、等腰三角形、四边形等知识综合在一起进行命题,题型多为作图题,属中档难度题 角平分线的性质是本章的重要内容,它是除了用三角形全等证明线段相等之外的又一个证明线段相等的重要方法 中考命题中, 多将角平分线的作法及性质与其他知识点结合在一起进行考查, 题型多为选择、填空、作图题,分值在 3~6 分这就要求学生必须熟练掌握用尺规作图法作角平分线的要领,并会应用角平分线的定义、性质解决相关问题 四 课时安排 安排一小时 五 教学方法 探究归纳法,实践法 六 教学过程 1〕 角平分线的定义 2〕角平分线的尺规作法 3〕 角平分线的性质 4〕角平分线的判定 知识点一 作角平分线 例 1:如图,已知点C为直线AB上一点,过C作直线CM,使CMAB于C。
思路分析: 由于 AB 是直线,要求作CMAB,实际上就是要作平角ACB的平分线根据角平分线的尺规作图法就可以作出直线 CM 解答过程: 作法: 1、以 C 为圆心,适当的长为半径画弧,与 CA、CB 分别交于点 D、E; 2 2、分别以 D、E 为圆心,大于12DE的长为半径画弧,使两弧交于点 M; 3、作直线 CM 所以,直线 CM 即为所求 解题后的思考: 此题要求“大于12DE的长为半径”的理由是:半径如果小于12DE,则两弧无法相交;而半径如果等于12DE,则两弧交点位于 C 点处,无法作出直线 CM 在数学学习中,不光要知道怎么做题,还要知道为什么要这样做 小结: 此题属于作图题在解决作图题时要求做到标准地使用尺规,标准地使用作图语言,标准地按照步骤作出图形,并且作图的痕迹要保留,不能擦掉 知识点二 角平分线的性质 角平分线上的点到角的两边的距离相等 角平分线性质的符号语言: P在AOB的平分线上 PDOA于D,PEOB于E PDPE 例 2:如图,AD是ABC的角平分线,DEAB,DFAC,垂足分别是,E F连接EF,交AD于点G说出AD与EF之间有什么关系?证明你的结论。
思路分析: 3 两条线段之间的关系有长度和位置两种关系,因此我们可以从这两方面去猜测判断 角是以其平分线为对称轴的轴对称图形,此题可以利用这一点进行判断 解答过程: EFAD,且EGFG 证明:AD平分BAC DEAB,DFAC,垂足分别是,E F DEDF 在Rt DEA和Rt DFA中 DEDFADAD Rt DEARt DFA〔HL〕 ADEADF 在△DGE 和△DGF 中 DEDFGDEGDFDGDG DGEDGF〔SAS〕 EGFG,90DGEDGF EFAD,且EGFG 解题后的思考: 通过此题我们知道, 证明两条线段相等, 除了利用全等三角形的性质外, 还可以利用角平分线的性质这样我们又多了一种证明线段相等的方法 在利用角平分线的性质时, “角平分线”和“两个垂直”这两个条件缺一不可 例 3:如图,D是ABC的外角ACE的平分线上一点,DFAC于F,DEBC于E,且交BC的延长线于E 求证:CECF 4 思路分析: 由已知条件,可以利用角平分线的性质得到 DE=DF。
而要证明 CE=CF,只要证明以它们为边的两个三角形全等即可将两者结合起来分析就不难找到思路 解答过程: CD 是ACE的平分线,DFAC于F,DEBC于E 90DECDFC ,DEDF 在Rt DEC和Rt DFC中 DCDCDEDF Rt DECRt DFC〔HL〕 CECF 解题后的思考: 利用角平分线的性质可以证明线段相等,而线段相等可能又是证明其他结论所需要的条件 小结: 运用角平分线的性质时应注意以下三个问题: 〔1〕这里的距离指的是点到角的两边的垂线段的长; 〔2〕该性质可以独立作为证明两条线段相等的依据,不需要再用全等三角形的性质; 〔3〕使用该结论的前提条件是图中有角平分线、有两个垂直 知识点三 角平分线的判定 到角的两边距离相等的点在角的平分线上 角平分线判定的符号语言: PDOA于D,PEOB于E 且PDPE P在AOB的平分线上 〔或写成OP是AOB的平分线〕 例 4:如图,BECF,DFAC于F,DEAB于E,BF和CE交于点D 求证:AD平分BAC 5 思路分析: 要证AD平分BAC,已知条件中已经有两个垂直,即已经有点到角的两边的距离了,只要证明这两个距离相等即可。
而要证明两条线段相等,可利用全等三角形的性质来证明 解答过程: DFAC于F,DEAB于E 90DEBDFC 在BDE和CDF中 DEBDFCBDECDFBECF BDECDF〔AAS〕 DEDF 又DFAC于F,DEAB于E AD平分BAC 解题后的思考: 判定角的平分线时假设题目中只给出一个条件DEDF或DFAC,DEAB,那么得出AD平分BAC这一结论是错误的 例 5: 如图,,F G是OA上两点,,M N是OB上两点, 且FGMN,PFGPMNSS, 试问点P是否在AOB的平分线上? 思路分析: 一方面,要判断点P是否在AOB的平分线上,只要判断点 P 到角的两边距离是否相等即可;另一方面,由已知条件中三角形面积和底边相等可以推导出高相等这样已知和结论就联系起来了 解答过程: 证明:过点 P 作PDOA于 D,PEOB于 E 12PFGSFG PD,12PMNSMN PE, 而PFGPMNSS 1122FG PDMN PE 6 又FGMN PDPE 又PDOA于 D,PEOB于 E P在AOB的平分线上。
解题后的思考: 利用面积证明相关结论是一种常见方法面积法有着其他方法所不具有的优势,比方它不要求考虑线段的位置关系 小结: 角平分线的判定与角平分线的性质是互逆的 判定角的平分线要满足两个条件: “垂直”和“相等” 假设已知“垂直”则设法证明“相等” ,假设已知“相等”则设法证明“垂直” 知识点四 角平分线的综合应用 例 6:如图,在ABC中,90C ,AD平分BAC,DEAB于E,F在AC上,BDDF求证:CFEB 思路分析: 由已知条件很容易得到 DC=DE;要证明 CF=EB,只要证明其所在三角形全等即可,再由此去找全等条件 解答过程: AD平分BAC,90C ,DEAB DCDE 在Rt FCD与Rt BED中 DCDEDFBD Rt FCDRt BED〔HL〕 CFEB 7 解题后的思考: 掌握角平分线的性质和判定固然重要,但学会分析题目所给条件更是解决问题的关键 例 7:如图,已知在ABC中,BDDC,12 求证:AD平分BAC 思路分析: 有两种方法证明AD平分BAC:一是直接利用定义证明BADCAD;二是利用角平分线的判定,证明点 D 到角的两边距离相等。
仔细观察,前者需要证明三角形全等,但此题使用全等条件中的“边边角” ,无法证明两个三角形全等后者通过作垂线构造出三角形,其条件足以证明两个三角形全等 解答过程: 过点 D 作DEAB于 E,DFAC于 F 故,90BEDCFD 在BDE与CDF中 12BEDCFDBDCD BDECDF〔AAS〕 DEDF 又DEAB于 E,DFAC于 F AD平分BAC 解题后的思考: 当题目中有角平分线这一条件时,解题时常过角平分线上的点向角的两边作垂线;当有垂线这一条件时,常作辅助线得到角的平分线 小结: 用角平分线证明线段相等或角相等时,常常与证明三角形全等配合使用,证明时要先观察需证明的线段或角〔或通过等量代换得到的线段或角〕在哪两个可能全等的三角形中 8 提分技巧 本节课我们主要学习了角平分线的性质和判定,它们都可以通过三角形全等得出证明;这样,我们又得到了证明线段相等或角相等的一种方法在解题中假设能用它们直接得出线段或角相等时,就不需要再通过证明三角形全等来间接证明,这样可以减少这一条件麻烦 在利用角平分线的性质时,可由“角平分线”和“距离”这两个条件得出线段相等,这两个条件缺一不可;同理,在利用角平分线的判定这一条件时,可由“距离”和“线段相等”这两个条件得出角平分线,这两个条件也是缺一不可的。
3.稳固练习 练习 1,2,3……. 七 板书设计 知识点清单 标题 所学知识点 对应的习题 八 教学反思 9 〔答题时间:45 分钟〕 一、选择题: 1. 到三角形三条边的距离都相等的点是这个三角形的〔 〕 A. 三条中线的交点 B. 三条边的垂直平分线的交点 C. 三条高的交点 D. 三条角平分线的交点 2. 在Rt ABC中,90C ,AD平分BAC,交BC于点D,假设32BC ,且:9:7BD CD ,则点D到AB的距离为〔 〕 A. 18 B. 16 C. 14 D. 12 3. 如图,直线123, ,l l l表示三条互相交叉的公路,现要修建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有〔 〕 A. 一处 B. 两处 C. 三处 D. 四处 4. 如图, 在Rt ABC中,90C ,BD是ABC的平分线, 交AC于D, 假设CDn,ABm, 则ABD的面积是〔 〕 A. 13mn B. 12mn C. mn D. 2mn 5. 如图,ABC中,90C , 点O为ABC的三条角平分线的交点,ODBC,OEAC,OFAB,点,,D E F分别是垂足,且10ABcm,8BCcm,6CAcm,则点O到三边,,AB AC BC的距离分别等于〔 〕cm A. 2、2、2 B. 3、3、3 C. 4、4、4 D. 2、3、5 二、填空题: 6. 如图,已知,BA CA分别是DBC,ECB的平分线,BDDE,CEDE,垂足分别为,D E,则DA与EA有怎样的数量关系____________。
10 7. 已知ABC中,90C ,AD平分A,2ADBDCD,点D到ABcm,则BC的长为___________cm 8. 如图, BD 是ABC的平分线,DEAB于 E,DFBC于 F,236ABCScm,18ABcm,12BCcm,则 DE 的长是__________ 三、解答题: 9. 如图,AB//CD,90B ,E是BC的中点,DE平分ADC求证:AE平分DAB 10. 如图,已知在四边形ABCD中,180BD ,AC平分BAD,CEAD,E为垂足求证:2ABADAE 11 一、选择题: 1. D 2. C 3. D 4. B 5. A 二、填空题: 6. DAEA 7. 16.8 8. 125cm 解析:ABDCBD,DEAB,DFBC DEDF ABDCBDABCSSS 1118123622DEDF (96)36DE,125DE 三、解答题: 9. 证明:过点 E 作EFAD于 F DE平分ADC,ECDC,EFFD CEEF 又CEBE EFBE 又EFAF,BEAB AE平分DAB。
10. 证明:延长 AB,过 C 作CHAB,H 为垂足 AC平分BAD,且CEAD,CHAB CHCE 又190HCA ,290ECA ,12 HCAECA 在ACH与ACE中, 90HCAECAHAECACAC ACHACE〔AAS〕 AHAE 12 又180ABCHBC ,180ABCD HBCD 在Rt BHC与Rt DEC中, 90HBCDBHCDECHCEC Rt BHCRt DEC〔AAS〕 HBDE ABADABAEED ABAEBH AHAE 2AE 。












