好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

北师大版八年级上册数学知识点.docx

14页
  • 卖家[上传人]:王****
  • 文档编号:222479155
  • 上传时间:2021-12-12
  • 文档格式:DOCX
  • 文档大小:29.43KB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 北师大版八年级上册数学知识点 北师大版八年级上册数学知识点1 因式分解 1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的公约数?相同因式的最低次幂. 注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3. 4.因式分解的公式: (1)平方差公式:a2-b2=(a+b)(a-b); (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2. 5.因式分解的注意事项: (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理; (6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项. 7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”. 分式 1.分式:一般地,用A、B表示两个整式,AB就可以表示为的形式,如果B中含有字母,式子叫做分式. 2.有理式:整式与分式统称有理式;即. 3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用: (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; 即 (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单. 5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解. 6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:. 8.分式的乘方:. 9.负整指数计算法则: (1)公式:a0=1(a≠0),a-n=(a≠0); (2)正整指数的运算法则都可用于负整指数计算; (3)公式:,; (4)公式:(-1)-2=1,(-1)-3=-1. 10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母. 11.最简公分母的确定:系数的最小公倍数?相同因式的次幂. 12.同分母与异分母的分式加减法法则:. 13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数. 14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0. 15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程. 16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根. 17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根. 18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方 1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算. 2.平方根的性质: (1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根. 3.平方根的`表示方法:a的平方根表示为和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算. 4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.注意:0的算术平方根还是0. 5.三个重要非负数:a2≥0,|a|≥0,≥0.注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1);(a≥0) (2). 7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方. 8.立方根的性质: (1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:. 10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数. 12.实数的分类:(1)(2). 13.数轴的性质:数轴上的点与实数一一对应. 14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:. 三角形 几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1.三角形的角平分线定义: 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)几何表达式举例: (1)∵AD平分∠BAC ∴∠BAD=∠CAD (2)∵∠BAD=∠CAD ∴AD是角平分线 2.三角形的中线定义: 在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图) 几何表达式举例: (1)∵AD是三角形的中线 ∴BD=CD (2)∵BD=CD ∴AD是三角形的中线 3.三角形的高线定义: 从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图) 几何表达式举例: (1)∵AD是ΔABC的高 ∴∠ADB=90 (2)∵∠ADB=90 ∴AD是ΔABC的高 ※4.三角形的三边关系定理: 三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图) 几何表达式举例: (1)∵AB+BC>AC ∴…………… (2)∵AB-BC ∴…………… 5.等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形.(如图) 几何表达式举例: (1)∵ΔABC是等腰三角形 ∴AB=AC (2)∵AB=AC ∴ΔABC是等腰三角形 6.等边三角形的定义: 有三条边相等的三角形叫做等边三角形.(如图) 几何表达式举例: (1)∵ΔABC是等边三角形 ∴AB=BC=AC (2)∵AB=BC=AC ∴ΔABC是等边三角形 7.三角形的内角和定理及推论: (1)三角形的内角和180;(如图) (2)直角三角形的两个锐角互余;(如图) (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角. (1)(2)(3)(4)几何表达式举例: (1)∵∠A+∠B+∠C=180 ∴………………… (2)∵∠C=90 ∴∠A+∠B=90 (3)∵∠ACD=∠A+∠B ∴………………… (4)∵∠ACD>∠A ∴………………… 8.直角三角形的定义: 有一个角是直角的三角形叫直角三角形.(如图) 几何表达式举例: (1)∵∠C=90 ∴ΔABC是直角三角形 (2)∵ΔABC是直角三角形 ∴∠C=90 9.等腰直角三角形的定义: 两条直角边相等的直角三角形叫等腰直角三角形.(如图) 几何表达式举例: (1)∵∠C=90CA=CB ∴ΔABC是等腰直角三角形 (2)∵ΔABC是等腰直角三角形 ∴∠C=90CA=CB 10.全等三角形的性质: (1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图) 几何表达式举例: (1)∵ΔABC≌ΔEFG ∴AB=EF……… (2)∵ΔABC≌ΔEFG ∴∠A=∠E……… 11.全等三角形的判定: “SAS”“ASA”“AAS”“SSS”“HL”.(如图) 北师大版八年级上册数学知识点2 (3)几何表达式举例: (1)∵AB=EF ∵∠B=∠F 又∵BC=FG ∴ΔABC≌ΔEFG (2)……………… (3)在RtΔABC和RtΔEFG中 ∵AB=EF 又∵AC=EG ∴RtΔABC≌RtΔEFG 12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相等;(如图) (2)到角的两边距离相等的点在角平分线上.(如图) 几何表达式举例: (1)∵OC平分∠AOB 又∵CD⊥OACE⊥OB ∴CD=CE 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.