
河北省石家庄市28中学2025届数学九年级第一学期开学复习检测试题【含答案】.doc
23页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河北省石家庄市28中学2025届数学九年级第一学期开学复习检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒设平均每次降价的百分率为,根据题意所列方程正确的是( )A. B. C. D.2、(4分)下列等式中,不成立的是 A. B.C. D.3、(4分)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 ( )A.矩形 B.直角梯形 C.菱形 D.正方形4、(4分)如图,已知一次函数的图像与轴,轴分别交于,两点,与反比例函数在第一象限内的图像交于点,且为的中点,则一次函数的解析式为( )A. B. C. D.5、(4分)下列四个三角形,与左图中的三角形相似的是( ).A. B. C. D.6、(4分)与是同类二次根式的是( )A. B. C. D.7、(4分)如图,在中,,,分别为,,边的中点,于,,则等于( )A.32 B.16 C.8 D.108、(4分)已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为( )A.1 B.2 C.-2 D.-1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)现有两根木棒的长度分别是4 米和3 米,若要钉成一个直角三角形木架,则第三根木棒的长度为_________米.10、(4分)如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值__________. 11、(4分) 分解因式:9a﹣a3=_____.12、(4分)_____.13、(4分)如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.三、解答题(本大题共5个小题,共48分)14、(12分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现如图1,当点E在菱形ABCD内部时,连接CE,BP与CE的数量关系是_______,CE与AD的位置关系是_______.(2)归纳证明证明2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(3)拓展应用如图3,当点P段BD的延长线上时,连接BE,若AB=5,BE=13,请直接写出线段DP的长.15、(8分)已知三角形纸片ABC的面积为41,BC的长为1.按下列步骤将三角形纸片ABC进行裁剪和拼图:第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.段DE上任意取一点F,段BC上任意取一点H,沿FH将四边形纸片DBCE剪成两部分;第二步:如图2,将FH左侧纸片绕点D旋转110°,使线段DB与DA重合;将FH右侧纸片绕点E旋转110°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC面积相等的四边形纸片. 图1 图2(1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.16、(8分)已知:在中,对角线、交于点,过点的直线交于点,交于点.求证:,.17、(10分)如图,在正方形中,,分别是,上两个点,. (1)如图1,与的关系是________;(2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;(3)如图2,当点是的中点时,求证:.18、(10分)由中宣部建设的“学习强国”学习平台正式上线,这是推动新时代中国特色社会主 义思想,推进马克思主义学习型政党和学习型社会建设的创新举措.某校党组织随机抽取了 部分党员教师某天的学习成绩进行了整理,分成 5 个小组( x 表示成绩,单位:分,且20 £ x < 70 ),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第 2,第5 两组测试成绩人数直方图的高度比为 3:1,请结合下列图表中相关数据回答下列问题:(1)填空: a = , b = ;(2)补全频数分布直方图;(3)据统计,该校共有党员教师 200 人,请你估计每天学习成绩在 40 分以上(包括 40 分) 的党员教师人数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____20、(4分)若代数式的值等于0,则x=_____.21、(4分)由作图可知直线与互相平行,则方程组的解的情况为______.22、(4分) “6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折23、(4分)如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“ ”或“”).二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,一次函数y=-2x-4的图象与反比例函数的图象交于A(1,n),B(m,2).(1)求反比例函数关系式及m的值(2)若x轴正半轴上有一点M,满足ΔMAB的面积为16,求点M的坐标;(3)根据函数图象直接写出关于x的不等式的解集25、(10分)计算:﹣(π﹣2019)0+2﹣1.26、(12分)如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=1.求AC的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】试题解析:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),则列出的方程是36×(1-x)2=1.故选C.2、D【解析】根据不等式的性质,对选项进行求解即可.【详解】解:、,故成立,不合题意;、,故成立,不合题意;、,故成立,不合题意;、,故不成立,符合题意.故选:.本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.3、A【解析】解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD(三角形的中位线平行于第三边),∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:A.4、B【解析】先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx-4即可得到k的值,即可得到结论.【详解】把x=0代入y=kx−4得y=−4,则B点坐标为(0,−4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx−4得2k−4=4,解得k=4,∴一次函数的表达式为y=4x−4,故选:B.此题考查反比例函数与一次函数的交点问题,解题关键在于求出k值5、B【解析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,给出的三角形三边长分别为,,.A、三角形三边分别是2,, 3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.故选:B.此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.6、D【解析】把各个二次根式化为最简二次根式,再根据同类二次根式的概念进行判断即可.【详解】解:A. 与不是同类二次根式,此选项不符合题意;B. 与不是同类二次根式,此选项不符合题意;C. 与不是同类二次根式,此选项不符合题意;D. 与是同类二次根式,此选项符合题意;故选:D.本题考查的知识点是同类二次根式,需注意要把二次根式化简后再看被开方数是否相同.7、B【解析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【详解】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=1.故选B.本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.8、C【解析】直接把点(1,-2)代入反比例函数y= 即可得出结论.【详解】∵反比例函数y=的图象过点A(1,−2),∴−2= ,解得k=−2.故选C.此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式二、填空题(本大题共5个小题,每小题4分,共20分)9、.【解析】题目中没有明确直角边和斜边,故要分情况讨论,再根据勾股定理求解即可.【详解】解:当第三根木棒为直角边时,长度当第三根木棒为斜边时,长度故第三根木棒的长度为米.故答案为:.本题考查勾股定理的应用,分类讨论问题是初中数学的重点,在中考中比较常见,不重不漏的进行分类是解题的关键.10、1【解析】过点O作OG⊥AB,OH⊥BC,利用AAS证明△EOG≌△FOH,得到两个正方形重合部分的面积是正方形OGBH,由此得到答案.【详解】如图,过点O作OG⊥AB,OH⊥BC,则∠OGE=∠OHF=90°,∵四边形ABCD是正方形,∴OA=OB=OC,∠AOB=∠BOC=90°,∴OG=AB=BC=OH=1,∠GOH=90°,∵四边形A1B1C1O是正方形,∴∠A1OC1=90°,∴∠EOG=∠FOH,∴△EOG≌△FOH,∵∠ABC=∠OGB=∠OHB=90°,∴四边形OGBH是矩形,∵OG=OH,∴四边形OGBH是正方形,∴两个正方形重叠部分的面积=。












