
八年级数学下册单元评价检测二第17章含解析新版新人教版.doc
8页单元评价检测(二)(第十七章)(45分钟 100分)一、选择题(每小题4分,共28分)1.(2017·临沂期中)以下列各组线段为边,能构成直角三角形的是 ( )A.8cm,9cm,10cm B.cm,cm,cmC.1cm,2cm,cm D.6cm,7cm,8cm【解析】选C.A.∵82+92≠102,∴不能构成直角三角形;B.∵()2+()2≠()2,∴不能构成直角三角形;C.∵12+()2=22,∴能构成直角三角形;D.∵62+72≠82,∴不能构成直角三角形.2.(2017·瑶海区期中)一直角三角形的三边分别为2,3,x,那么以x为边长的正方形的面积为 ( )A.13 B.5 C.13或5 D.4【解析】选C.当2和3都是直角边时,则x2=4+9=13;当3是斜边时,则x2=9-4=5.3.下列命题的逆命题是真命题的是 ( )导学号42684311A.若a=b,则|a|=|b|B.全等三角形的周长相等C.若a=0,则ab=0D.有两边相等的三角形是等腰三角形【解析】选D.A的逆命题是若|a|=|b|,则a=b.假命题;B的逆命题是周长相等的三角形是全等三角形.假命题;C的逆命题是若ab=0,则a=0.假命题;D的逆命题是等腰三角形的其中两边相等.真命题.4.(2017·淮安模拟)如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为 ( )A.5 B.6 C.7 D.25【解析】选A.如图,在Rt△ABC中,AC=4,BC=3,由勾股定理得AB===5.5.已知两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是 ( )A.5 B.C.5或 D.不能确定【解析】选C.当第三条线段为直角边时,4为斜边,根据勾股定理得第三边长为=;当第三条线段为斜边时,根据勾股定理得第三边长为=5.6.(2017·湖州中考)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是 ( )【解析】选C.设③中直角边的长为1,则①的斜边的长为2,在C中,⑦斜边的长为2,④的短边的长为1,而2≠3,故C错误.7.如图所示,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是 ( )导学号42684312A.cm B.5 cmC.3cm D.7 cm【解析】选B.画出该圆柱的侧面展开图如图所示,则蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离为线段AP的长.在Rt△ACP中,AC==3(cm),PC=BC=4cm,所以AP==5(cm).二、填空题(每小题5分,共25分)8.写出“在直角三角形中,30°角所对的直角边等于斜边的一半”的逆命题:__________________.【解析】交换原命题的题设与结论,即可得到它的逆命题.答案:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°9.已知△ABC的三边a,b,c满足(a-5)2+(b-12)2+|c-13|=0,则△ABC是__________三角形.【解析】∵(a-5)2+(b-12)2+|c-13|=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形.答案:直角10.如图,在△ABC中,∠C=90°,则BC=________.【解析】由勾股定理得,BC==4.答案:411.(2017·邵阳中考)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为________.【解析】将a=1,b=2,c=代入得S==1.答案:112.(2017·武汉中考)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.导学号42684313【解析】如图,将△ABD沿AD翻折得△AFD,可证△ACE≌△AFE,∴BD=DF,CE=EF,∠AFD=∠B=30°,∠AFE=∠C=30°,∴∠DFE=60°,作EH⊥DF于H,设BD=2CE=4x,则EF=2x,DF=4x,FH=x,EH=x,DE2=DH2+EH2,∵在△ABC中,AB=AC=2,∠BAC=120°,易得BC=6,∴(6-6x)2=(3x)2+(x)2,解得:x1=,x2=(舍去),∴DE=6-6x=3-3.答案:3-3三、解答题(共47分)13.(10分)(2017·河北区模拟)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.【解题指南】先根据题意得出AD=BD,再由勾股定理得出AB的长,在Rt△ADC中,根据直角三角形的性质得出AC及CD的长,进而可得出结论.【解析】∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴AB=BD=1,AB=.在Rt△ADC中,∵∠C=30°,∴AC=2AD=2,∴CD=,BC=BD+CD=1+,∴AB+AC+BC=++3.【变式训练】(2017·武城县校级月考)如图,在△ABC中,∠C=60°,AB=14,AC=10,求BC的长.【解析】如图,过点A作AD⊥BC于点D.在Rt△ACD中,AC=10,∠C=60°,∴CD=AC=5,AD=5,∵AB=14,∴BD==11,∴BC=CD+BD=16.14.(12分)(2017·岱岳区期中)如图,在四边形ABCD中,∠ADC=90°,AD=12, CD=9,AB=25,BC=20,求四边形ABCD的面积.导学号42684314【解析】连接AC,在△ADC中,∵∠D=90°,AD=12,CD=9,∴AC==15,S△ADC=AD·CD=×12×9=54,在△ABC中,∵AC=15,AB=25,BC=20,∴BC2+AC2=AB2,∴△ACB是直角三角形,∴S△ACB=AC·BC=×15×20=150.∴S四边形ABCD=S△ABC+S△ACD=150+54=204.15.(12分)一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a,BC=b,AC=c,请利用四边形BCC′D′的面积验证勾股定理.【解析】∵四边形BCC′D′为直角梯形,∴S梯形BCC′D′=(BC+C′D′)·BD′=.∵Rt△ABC≌Rt△AB′C′,∴∠BAC=∠B′AC′,∴∠CAC′=∠CAB′+∠B′AC′=∠CAB′+∠BAC=90°.∴S梯形BCC′D′=S△ABC+S△CAC′+S△D′AC′=ab+c2+ab=,即=,整理,得a2+b2=c2.16.(13分)小强家有一块三角形菜地,量得两边长分别为40m,50m,第三边上的高为30m.请你帮小强计算这块菜地的面积.(结果保留根号)导学号42684315【解题指南】要求面积,则要构成直角三角形,根据题意可画出草图.此题需分两种情况讨论:(1)若∠ACB为钝角时,作BD⊥AC交AC的延长线于D;(2)若∠ACB为锐角时,作BD⊥AC交AC于D.两种情况下,分别利用勾股定理解直角三角形,可求出△ABC的高,则面积可求.【解析】分两种情况:(1)如图,当∠ACB为钝角时,∵BD是高,∴∠ADB=90°.在Rt△BCD中,BC=40,BD=30,∴CD===10.在Rt△ABD中,AB=50,∴AD==40.∴AC=AD-CD=40-10,∴S△ABC=AC·BD=×(40-10)×30=(600-150)(m2).(2)当∠ACB为锐角时,∵BD是高,∴∠ADB=∠BDC=90°,在Rt△ABD中,AB=50,BD=30,∴AD==40.同理CD===10,∴AC=AD+CD=(40+10),∴S△ABC=AC·BD=×(40+10)×30=(600+150)m2,综上所述:S△ABC=(600±150)m2.。












