好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

[三招破解《解直角三角形》应用题] 初三数学解直角三角形应用题范文.docx

8页
  • 卖家[上传人]:贵13****忠志高
  • 文档编号:207878167
  • 上传时间:2021-11-05
  • 文档格式:DOCX
  • 文档大小:20.06KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • [三招破解《解直角三角形》应用题] 初三数学解直角三角形应用题 摘 要:能否高效解决解直角三角形应用题,是关系中考能否取得优秀成绩的重要一环.本文从构造三种数学模型这一角度入手,给考生们提供了几种便捷地解决这类问题的方法. 关键词:应用题 解直角三角形 数学模型 应用题在解直角三角形这一章中有着十分重要的地位,它使抽象的三角函数理论与实际生活紧密地联系在一起,较好地体现了数学来源于生活又应用于生活的特性,很好地贯彻了新课程标准关于理论联系实际的思想,是历年中考的必考题型.能否准确高效解决这类问题直接决定学生能否取得好成绩. 我在中考复习迎考中构造了三类数学模型,灵活运用这三类模型能够使学生便捷、正确地解决这一类问题 一、构造一个直角三角形模型 这一类问题一般比较简单,关键在于构造出一个直角三角形,把相应的边和角都归纳进这个三角形,然后用适当的边角关系解决相应的问题. 例1(南通市中考题):一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A处测得某灯塔位于它的北偏东30的B处(如图1-1),上午9时行至C处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号)。

      分析:因为灯塔在C的正北,可构造如图所示的直角三角形ABC,又AC=20,∠BAC=60,所以由正切函数可计算出BC. 解:在Rt△ABC中, ∵∠ACB=90,∠BAC=90-30=60, 又∵AC=201=20, ∴tan60=,BC=AC tan60=20=20. 例2(苏州市中考题):苏州的虎丘塔塔身倾斜,却历经千年而不倒,被誉为“中国第一斜塔”(如图1-2).BC是过塔底中心B的铅垂线,AC是塔顶A偏离BC的距离,椐测量,AC约为2.34m,倾角约为248′,求虎丘塔塔身AB的长度.(精确到0.1m) 分析:因为BC是铅垂线,所以与地面垂直,AB是斜线,要解决该问题,必须构造直角三角形,故过塔顶A作BC垂线垂足为点C,放在Rt△ACB中解决该问题. 解:在Rt△ACB中, ∵∠ACB=90,∠ABC=248′,又AC=2.34 ∴ tan248′=, 即AB=ACcot248′=2.34 cot248′=47.8m. 二、构造两个直角三角形模型 如图2-1,已知AB⊥CD,∠ACB=α,∠ADB=β(或者其他的两个角),CD=d(或其他任一边的长度),求AB及其他边的长度. 这类模型又分两种情况分别解决不同的问题. 第一种情况:点C,D在边AB的同侧(如图2-1),利用这两个直角三角形的边角,边边关系构造方程组解决诸如测量中的俯角,仰角,轮船在大海中航行中的方位角等问题. 例3(天津市中考题):如图2-2,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30,货轮以每小时20海里的速度航行,一小时后到达B处,测得灯塔M在北偏西45,问该货轮到达灯塔正东方向D处时,货轮与灯塔M距离是多少?(精确到0.1海里,≈1.732) 分析:因为D在M正东方向,AB是正北方向,所以MD⊥AD,即构造了两个直角三角形:Rt△ADM和Rt△BDM.在这两个直角三角形中利用边角关系构造方程组,即可解决问题. 解:不妨设MD=x,DB=y. 又∠MAD=30, ∠MBD=45,AB=201=20, 在Rt△BDM中,∵tan∠MBD=, ∴tan45= ① 在Rt△ADM中,∵tan∠MAD=, ∴tan30= ② 解这个方程组得x=10(+1)≈27.3,y=10(+1))≈27.3. 所以该货轮到达灯塔正东方向D处时,货轮与灯塔M距离约为27.3海里. 第二种情况:点C,D在边AB的异侧(如图3-1),利用这两个直角三角形的边角、边边关系构造方程组也能解决一系列问题. 例4(中考预测题):如图3-2,平地上有一建筑物AB和铁塔CD相距60m,已知在建筑物顶部测得铁塔底部的俯角为30,又测得塔顶的仰角为45,求铁塔的高(精确到0.01米). 分析:本题需构造直角三角形,可从点A引CD的垂线,垂足是点E,得到两个Rt三角形,在这两个三角形中利用边角关系构造方程组,即可解决问题. 解:作AE⊥CD,交CD于点E,不妨设CE=x,DE=y.又∠DAE=30,∠CAE=45. 在Rt△ADE中,∵tan∠DAE= ∴tan30= ① 在Rt△AEC中,∵tan∠CAE= ∴tan45= ② 解这个方程组得x=60 y=20 ∴DE=60+20≈94.64 答:铁塔的高度为94.64m. 例5(常州市中考题):如图3-3,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时15千米的速度沿西偏北30方向前进,乙船以每小时15千米的速度沿东北方向前进。

      甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75的方向追赶,结果两船在B处相遇 (1)甲船从C处追赶上乙船用了多少时间? (2)甲船追赶乙船的速度是每小时多少千米? 分析:因为乙船速度始终没有改变,本题应从乙船入手,若能求出AB的长度,则可求出乙船所用的时间,从而可求出甲船追赶上乙船用了多少时间.构造直角三角形,可过点A引CB的垂线,垂足是点E,得到两个直角三角形,利用边角关系可求出AB的长度. 解:过点A引CB的垂线,垂足是点E,又∠ACE=45,∠EAB=60. 在Rt△ACE中,∵sin∠ACE=,即sin45= ∴AE=AC.sin45=30=30 又∵CE=AE ∴CE=AE=30 在Rt△AEB中,∵cos∠BAE= ∴AB===60 又∵tan∠EAB= ∴EB=AEtan∠EAB=30tan60=30 ∴CB=CE+EB=30+30 从而,乙船所用时间:==4小时 甲船从C处追赶上乙船用时间是:4-2=2小时 甲船追赶乙船的速度是:CB=(30+30)=(15+15)千米/小时 三、作梯形的高,构造直角三角形模型 如图4-1,在梯形ABCD中过点A,D分别作梯形的高AE,DF可构造出两个三角形,利用坡度与正切函数的关系解决相应问题. 例6(中考预测题):如图4-2,梯形ABCD是一堤坝的横截面示意图,坡角∠C=60,AB的坡度=,坝的上底宽AD=10m,斜坡CD长为8m,求其截面面积. 分析:要求梯形截面面积需要求出下底BC与梯形的高,所以过A,D作梯形的高AE,DF,构造两个直角三角形:Rt△AEB和Rt△DFC.放在这两个三角形中解决问题。

      解:过点A,D作AE⊥BC,DF⊥BC垂足分别为点E,F,可得EF=AD=10. 在Rt△DFC中,∵sin∠DCF= ∴DF=DCsin∠DCF=8sin60=4 又∵∠CDF=30 ∴FC=DC=4 在Rt△ABE中,∵i==,又AE=DF=4 ∴BE=2AE=24=8 ∴S梯形ABCD=DF =4=(48+48) 所以,该堤坝的截面面积为(48+48)m. 显然,在解答直角三角形应用题时,构造适当的数学模型能提高同学们分析问题、解决问题的能力,大大简化运算,广大教师在复习迎考中应注意到这一点. 参考文献: [1]郭奕津.新教材完全解读.吉林人民出版社,2022.11. [2]薛金星.中学教材全解.陕西人民教育出版社,2022.12. [3]占春生.教材动态全解.东北师大出版社,2022.11. [4]新课标初中拓展强化导学练.江苏人民出版社,2022.12. [5]中学数学教学参考.陕西师大出版社,2022.9. 8。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.