好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

立体图形与平面图形2份新课标人教版(收藏版).docx

5页
  • 卖家[上传人]:spr****hai
  • 文档编号:302805539
  • 上传时间:2022-06-02
  • 文档格式:DOCX
  • 文档大小:15.94KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 20__立体图形与平面图形2份新课标人教版(收藏版)立体图形与平面图形一、立体图形1. 柱体棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.圆柱:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱.2. 锥体棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.圆锥:以直角三角形一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥.3. 球体半圆以它的直径为旋转轴,旋转所成的曲面所围成的几何体叫球体.4. 多面体围成棱柱和棱锥的面是平的面,像这样的立体图形叫多面体.棱柱有三棱柱、四棱柱、五棱柱等.棱锥也有三棱锥、四棱锥、五棱锥等.二. 画立体图形1. 三视图法从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,即视图,这样就把一个物体转化为平面的图形.从正面看到的图形称为正视图;从上面看到的图形称为俯视图;从侧面看到的图形称为侧视图,按观察方向不同,有左视图,右视图.注:⑴正视图与俯视图的长度相等,且相互对正,即“长对正”;⑵ 正视图与侧视图的高度相等,且相互平齐,即“高平齐”;⑶ 俯视图与侧视图的宽度相等,即“宽相等”.2. 欧拉公式多面体具有的顶点数,棱数和面数满足欧拉公式:顶点数+面数-棱数=2三、柱体、锥体的展开四、常见几何体的主视图【典型例题】例1. 下列说法是否正确?正确的打“√”,不正确的打“×”,并简要说明理由.(1)柱体的上、下两个面一样大(2)圆柱和圆锥的底面都是圆,圆柱的侧面是长方形,圆锥的侧面是三角形(3)棱柱的底面是四边形,侧面可能是三角形(4)棱锥的侧面都是三角形(5)球体、圆柱、圆锥都不是多面体.____:要对以上各种说法作出正确的判断,应从熟悉柱体、锥体、球体这些立体图形入手,把握它们各自的特征,弄清它们之间的区别.解:(1)√.柱体包括圆柱和棱柱.圆柱的两个底面都是大小一样的圆,棱柱两个底面都是一样大的三角形或多边形.(2)×.圆柱和圆锥的侧面都是弯曲的面.而长方形、三角形都是平的面,两者显然有区别.(3)×.棱柱的底面除了四边形以外,还可以是三角形等其它图形,棱柱的侧面都是四边形.(4)√.棱锥的所有棱都交于一点,侧面都是三角形.(5)√.多面体都是由平的面围成的立体图形,而球体、圆柱、圆锥并不都是由平面围成的.说明:留心生活中的物体,并能从中抽象出立体图形,除了注意不同类立体图形的区别,更应注意同类立体图形的细微差别.例2. 能否组成一个22条棱,10个面,15个顶点的棱柱或棱锥?为什么?____:本题很难利用图形作出判断、考虑到棱柱或棱锥都是多面体,多面体都应满足“欧拉公式”.解:根据欧拉公式,顶点数+面数-棱数=2当顶点数为15,面数为10时,棱数应为:因此,不能组成一个棱数为22,面数为10,顶点数为15的棱柱或棱锥.说明:欧拉公式体现了多面体中顶点数、面数与棱数之间的关系,已知其中的两个数就可以求出第三个数.另外,还可以用它来判断具有某些条件的多面体是否存在.例3. 填空正方体是由_________个顶点,_________条棱,_________个面组成的,它还具有以下特点(写出三个)___________________________.解:正方体是由8个顶点,12条棱,6个面组成的,它还具有以下特点:所有的棱都相等,所有的面都是正方形,它是一个多面体.(或柱体、四棱柱等)例4. 用火柴摆出正方形,用多少根火柴才能摆出6个正方形?尽可能多地设想各种方案.并画出你的图形.(要求摆出的6个正方体的边长限于一根火柴的长)解:第一种方法:摆平面图形需要用17根火柴.第二种方法:摆三棱柱需要用15根火柴.第三种方法:摆正方体需要用12根火柴.例5.如图,下面是一个物体的三视图,试描述该物体的形状.____:由物体的三视图想象物体的形状,要几个视图联系起来看.从正视图中可看出它是由两个部分叠加或是左边挖掉了一个形体,再对照俯视图,左视图便可知道右边上面加了半个圆柱体,圆柱下面是一个长方体,并且圆柱体的左面与长方体左面平齐,柱体的底面直径与长方体的宽一样.解:该物体的形状如图所示:说明:由视图想象物体的形状一般按以下步骤进行:(1)分线框,把几个视图联系起来看,把物体大致分成几部分;(2)识形体,定位置,根据每一部分的视图想象出它的形体,并确定它们的相互位置;(3)综合起来想整体,确定各个部分的形体及相互位置后,整个物体的形状也就清楚了.例6. 如图所示是一个几何体的两个视图,求该几何体的体积(取,长度单位cm)正视图俯视图____:从所给两个视图可以确定,设几何体是由两部分组成的,下面是一个长方体,它的长、宽、高分别是30cm、25cm、40cm.上面是一个圆柱体,底面圆的直径是20cm,长为32cm,所以该几何体的体积是这两部分体积之和.解:长方体体积为:30×25×40=30000cm3×102×32=10048 cm3 30000+10048=40048cm3答:几何体体积为.例7. 如图所示的立方体,将其展开得到的图形是()(例8图)5。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.