
拉格朗日恒等式.doc
1页有一个适合中学生的拉格朗日恒等式: [(a1)^2+(a2)^2][(b1)^2+(b2)^2]= [(a1)(b1)+(a2)(b2)]^2+[(a2)(b1)-(a1)(b2)]^2 [(a1)^2+(a2)^2+(a3)^2][(b1)^2+(b2)^2+(b3)^2]= =[(a1)(b1)+(a2)(b2))+(a3)(b3)]^2+[(a2)(b1)-(a1)(b2)]^2+ +[(a3)(b1)-(a1)(b3)]^2+[(a2)(b3)-(a3)(b2)]^2 [(a1)^2+...+(an)^2][(b1)^2+...+(bn)^2]= =[(a1)(b1)+...+(an)(bn)]^2+[(a2)(b1)-(a1)(b2)]^2+ +[(a3)(b1)-(a1)(b3)]^2+..+[(a(n-1))(bn)-(an)(b(n-1))]^2 用数学归纳法证明. 1. 显然 n=1 时,[(a1)^2][(b1)^2]=[(a1)(b1)]^2. 拉格朗日恒等式成立. 2. 设 n=k 时,拉格朗日恒等式成立. 当 n=k+1 时, [(a1)^2+...+(a(n+1))^2][(b1)^2+...+(b(n+1))^2]- -[(a1)(b1)+...+(a(n+1))(b(n+1))]^2= ={[(a1)^2+...+(an)^2][(b1)^2+...+(bn)^2]- -[(a1)(b1)+...+(an)(bn)]^2}+ +{[(a(n+1))^2(b1)^2+(b(n+1))^2(a1)^2]+..+ +[(a(n+1))^2(bn)^2+(b(n+1))^2(an)^2]- -2a(n+1)b(n+1)[(a1)(b1)+...+(an)(bn)]}= ={[(a2)(b1)-(a1)(b2)]^2+[(a3)(b1)-(a1)(b3)]^2+..+ +[(a(n-1))(bn)-(an)(b(n-1))]^2}+ +{[(a(n+1))^2(b1)^2-2a(n+1)b(n+1)(a1)(b1)+ +(b(n+1))^2(a1)^2]+..+[(a(n+1))^2(bn)^2- -2a(n+1)b(n+1)(an)(bn)+(b(n+1))^2(an)^2]}= ={[(a2)(b1)-(a1)(b2)]^2+[(a3)(b1)-(a1)(b3)]^2+..+ +[(a(n-1))(bn)-(an)(b(n-1))]^2}+ +{[(a(n+1))(b1)-b(n+1)(a1)]^2+ +..+[(a(n+1))(bn)-b(n+1)(bn)]^2} 所以 n=k+1 时,拉格朗日恒等式成立. 这样数学归纳法证明了拉格朗日恒等式.。












