好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

对数计算公式.doc

5页
  • 卖家[上传人]:新**
  • 文档编号:489288063
  • 上传时间:2023-04-22
  • 文档格式:DOC
  • 文档大小:30KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 性质①loga(1)=0;②loga(a)=1;③负数与零无对数.2对数恒等式a^logaN=N (a>0 ,a≠1)3运算法则①loga(MN)=logaM+logaN;②loga(M/N)=logaM-logaN;       ③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.…为自然对数的底定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=log(a)(M)+log(a)(N);3、log(a)(M÷N)=log(a)(M)-log(a)(N);4、log(a)(M^n)=nlog(a)(M)5、log(a^n)M=1/nlog(a)(M)推导:1、由于n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b2、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}又由于指数函数是单调函数,因此log(a)(MN) = log(a)(M) + log(a)(N)3、与(2)类似解决 M/N=M÷N由基本性质1(换掉M和N)a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]由指数的性质a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}又由于指数函数是单调函数,因此log(a)(M÷N) = log(a)(M) - log(a)(N)4、与(2)类似解决M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)] = a^{[log(a)(M)]*n}又由于指数函数是单调函数,因此log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)]推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n)换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)由基本性质4可得 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]4换底公式设b=a^m,a=c^n,则b=(c^n)^m=c^(mn)………………………………①对①取以a为底的对数,有:log(a)(b)=m……………………………..②对①取以c为底的对数,有:log(c)(b)=mn……………………………③③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)注:log(a)(b)表达以a为底x的对数。

      换底公式拓展:以e为底数和以a为底数的公式代换:logae=1/(lna) 5推导公式log(1/a)(1/b)=loga(b)loga(b)*logb(a)=16求导数(xlogax)'=logax+lna其中,logax中的a为底数,x为真数;(logax)'=1/xlna特殊的即a=e时有(logex)'=(lnx)'=1/x。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.