
九年级数学第一次月考卷(沪科版)(考试版)【测试范围:第二十一章】.docx
8页2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:150分钟 试卷满分:120分)考前须知:1.本卷试题共23题,单选10题,填空4题,解答9题2.测试范围:第二十一章(沪科版)第Ⅰ卷一、单项选择题(本题共10小题,每小题4分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)下列函数:①y=3−3x2;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有( )A.1个 B.2个 C.3个 D.4个2.(4分)已知反比例函数y=−6x,下列说法中正确的是( )A.该函数的图象分布在第一、三象限 B.点(2,3)在该函数图象上 C.y随x的增大而增大 D.该图象关于原点成中心对称3.(4分)如果将抛物线y=x2﹣2平移,使平移后的抛物线与抛物线y=x2﹣8x+9重合,那么它平移的过程可以是( )A.向右平移4个单位,向上平移11个单位 B.向左平移4个单位,向上平移11个单位 C.向左平移4个单位,向上平移5个单位 D.向右平移4个单位,向下平移5个单位4.(4分)已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:x…﹣1012…y…﹣5131…则下列判断正确的是( )A.抛物线开口向上 B.抛物线与y轴交于负半轴 C.当x>1时,y随x的增大而减小 D.方程ax2+bx+c=0的正根在3与4之间5.(4分)若点(x1,y2)、(x2,y2)和(x3,y3)分别在反比例函数y=−2x的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3 B.y3<y1<y2 C.y2<y3<y1 D.y3<y2<y16.(4分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是( ) x…﹣3﹣2 ﹣1 0 1 … y…﹣11﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.0<x1<17.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a−b+cx的图象在同一坐标系中大致为( )A. B. C. D.8.(4分)若二次函数y=ax2+bx+c的图象经过A(x1,y1)、B(x2,y2)、C(2﹣m,n)、D(m,n)(y1≠n)则下列命题正确的是( )A.若a>0且|x1﹣1|>|x2﹣1|,则y1<y2 B.若a<0且y1<y2,则|1﹣x1|<|1﹣x2| C.若|x1﹣1|>|x2﹣1|且y1>y2,则a<0 D.若x1+x2=2(x1≠x2),则AB∥CD9.(4分)如图,抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣1,0),B两点,与y轴的交点C在(0,3),(0,4)之间(包含端点),抛物线对称轴为直线x=1,有以下结论:①abc>0;②3a+c=0;③−43≤a≤−1;④a+b≤am2+bm(m为实数);⑤方程ax2+bx+c﹣3=0必有两个不相等的实根.其中结论正确有( )A.1个 B.2个 C.3个 D.4个10.(4分)在平面直角坐标系中,我们把横坐标和纵坐标互为相反数的点称为“相反点”,例如点(1,﹣1),(−2,2)…,都是“相反点”,若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”(2,﹣2),当﹣1≤x≤m时,二次函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为−74,则m的取值范围为( )A.﹣1≤m≤4 B.−1≤m≤32 C.32≤m≤4 D.32≤m≤5第II卷二、填空题(本题共4小题,每小题5分,共20分.)11.(5分)若函数y=(m+2)x3−m2是反比例函数,则m的值为 .12.(5分)若抛物线y=x2+2x+c的顶点在x轴上,则c= .13.(5分)如图,在△OAB中,边OA在y轴上.反比例函数y=kx(x>0)的图象恰好经过点B,与边AB交于点C.若BC=3AC,S△OAB=10.则k的值为 .14.(5分)抛物线y=ax2﹣4x+5的对称轴为直线x=2.(1)a= ;(2)若抛物线y=ax2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,则m的取值范围是 .三、解答题(本题共9小题,共90分.第15-18题每题8分,第19-20题每题10分,第21-22题每题12分,第23题每题14分,解答应写出文字说明、证明过程或演算步骤.)15.(8分)已知:y=y1+y2,并且y1与(x﹣1)成正比例,y2与x成反比例.当x=2时,y=5;当x=﹣2时,y=﹣9.(1)求y关于x的函数解析式;(2)求当x=8时的函数值.16.(8分)已知二次函数y=x2﹣(m+2)x+2m﹣1.(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数图象与y轴交于点(0,3),求该函数的图象与x轴的交点坐标.17.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根: ;(2)写出不等式ax2+bx+c<0的解集: ;(3)写出y随x的增大而减小的自变量x的取值范围 ;(4)若方程ax2+bx+c=k有两个不相等的实数根,直接写出k的取值范围: .18.(8分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2),B(﹣2,n)两点.(1)求反比例函数和一次函数的表达式;(2)连接OA,OB,求△ABO的面积;(3)不等式k1x+b>k2x的解集是 .19.(10分)如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.(1)求此桥拱截面所在抛物线的表达式;(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.20.(10分)为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y(mg)与x(min)成反比例,如图所示,现测得药物9min燃毕,此时室内空气每立方米的含药量为5mg.请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物燃烧后y关于x的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?21.(12分)在函数的学习中,我们经历了列表、描点、连线画出函数图象,并结合函数图象研究函数性质及其应用的过程,以下是我们研究函数y=34(x+1)2−1,x≤1x+1,x>1的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012…y…a2−14 ﹣1−14 2b…(1)写出表中a,b的值:a= ,b= ;(2)请根据表中的数据在平面直角坐标系中画出该函数的图象,并根据函数图象写出该函数的一条性质: ;(3)若此函数与直线y=m﹣2有2个交点,请结合函数图象,直接写出m的取值范围 .22.(12分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为 .(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?23.(14分)如图,已知:抛物线y=−14x2+bx+c经过点A(0,2)点C(4,0),且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求△ACM面积的最大值及此时点M的坐标;(3)M点坐标为(2)中的坐标,若抛物线的图象上存在点P,使△ACP的面积等于△ACM面积的一半,则P点的坐标为 .。












