好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

确定磁场最小面积的方法.doc

9页
  • 卖家[上传人]:cn****1
  • 文档编号:399421005
  • 上传时间:2023-04-07
  • 文档格式:DOC
  • 文档大小:271.50KB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • . 确定磁场最小面积的方法电磁场容历来是高考中的重点和难点近年来求磁场的问题屡屡成为高考中的热点,而这类问题单纯从物理的角度又比较难求解,下面介绍几种数学方法一、几何法例1. 一质量为m、电荷量为+q的粒子以速度,从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图1所示,粒子的重力不计,试求:(1)圆形匀强磁场区域的最小面积;(2)c点到b点的距离图1解析:(1)先找圆心,过b点逆着速度v的方向作直线bd,交y轴于d,由于粒子在磁场中偏转的半径一定,且圆心位于Ob连线上,距O点距离为圆的半径,据牛顿第二定律有:①解得②过圆心作bd的垂线,粒子在磁场中运动的轨迹如图2所示:要使磁场的区域有最小面积,则Oa应为磁场区域的直径,由几何关系知:图2③由②③得所以圆形匀强磁场的最小面积为:(2)带电粒子进入电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动的合成知识有:④⑤而⑥联立④⑤⑥解得二、参数方法例2. 在xOy平面有许多电子(质量为m、电荷量为e),从坐标原点O不断地以相同的速率沿不同方向射入第一象限,如图3所示。

      现加一个垂直于平面向里,磁感应强度为B的匀强磁场,要使这些电子穿过磁场区域后都能平行于x轴向x轴正向运动求符合该条件磁场的最小面积图3解析:由题意可知,电子是以一定速度从原点O沿任意方向射入第一象限时,先考察速度沿+y方向的电子,其运动轨迹是圆心在x轴上的A1点、半径为的圆该电子沿圆弧OCP运动至最高点P时即朝x轴的正向,可见这段圆弧就是符合条件磁场的上边界,见图5当电子速度方向与x轴正向成角度时,作出轨迹图4,当电子达到磁场边界时,速度方向必须平行于x轴方向,设边界任一点的坐标为,由图4可知:图4,消去参数得:可以看出随着的变化,S的轨迹是圆心为(0,R),半径为R的圆,即是磁场区域的下边界上下边界就构成一个叶片形磁场区域如图5所示则符合条件的磁场最小面积为扇形面积减去等腰直角三角形面积的2倍图5带电粒子在磁场中运动之磁场最小围问题剖析省扬中高级中学 风华  近年来在考题中多次出现求磁场的最小围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。

      下面我们以实例对此类问题进行分析 一、磁场围为圆形 例1 一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30°,如图1所示(粒子重力忽略不计)    试求:(1)圆形磁场区的最小面积;   (2)粒子从O点进入磁场区到达点所经历的时间;   (3)点的坐标 解析:(1)由题可知,粒子不可能直接由O点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点可知,其离开磁场时的临界点与O点都在圆周上,到圆心的距离必相等如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径    由 ,得弦长为:,   要使圆形磁场区域面积最小,半径应为的一半,即:,   面积   (2)粒子运动的圆心角为1200,时间   (3)距离 ,故点的坐标为(,0) 点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临界点速度垂线的交点上且圆心到这两临界点的距离相等;还要明确所求最小圆形磁场的直径等于粒子运动轨迹的弦长。

       二、磁场围为矩形 例2 如图3所示,直角坐标系第一象限的区域存在沿轴正方向的匀强电场现有一质量为,电量为的电子从第一象限的某点(,)以初速度沿轴的负方向开始运动,经过轴上的点(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与轴、轴重合,电子偏转后恰好经过坐标原点O,并沿轴的正方向运动,不计电子的重力求    (1)电子经过点的速度;   (2)该匀强磁场的磁感应强度和磁场的最小面积 解析:(1)电子从点开始在电场力作用下作类平抛运动运动到点,可知竖直方向:,水平方向:   解得而,所以电子经过点时的速度为:,设与方向的夹角为θ,可知,所以θ=300   (2)如图4,电子以与成30°进入第四象限后先沿做匀速直线运动,然后进入匀强磁场区域做匀速圆周运动恰好以沿轴向上的速度经过O点可知圆周运动的圆心一定在X轴上,且点到O点的距离与到直线上M点(M点即为磁场的边界点)的垂直距离相等,找出点,画出其运动的部分轨迹为弧MNO,所以磁场的右边界和下边界就确定了    设偏转半径为,,由图知OQ==,解得,方向垂直纸面向里   矩形磁场的长度,宽度   矩形磁场的最小面积为: 点评:此题中粒子进入第四象限后的运动即为例1中运动的逆过程,解题思路相似,关键要注意矩形磁场边界的确定。

       三、磁场围为三角形 例3 如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC为了使该粒子能在AC边上的N点(CM=CN)垂真于AC边飞出ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场若此磁场仅分布在一个也是正三角形的区域,且不计粒子的重力试求:    (1)粒子在磁场里运动的轨道半径r与周期T;   (2)该粒子在磁场里运动的时间t;   (3)该正三角形区域磁场的最小边长; 解析:(1)由和,   得:   ,       (2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M点作圆周运动到N点,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O,粒子的运动轨迹为弧GDEF,圆弧在G点与初速度方向相切,在F点与出射速度相切画出三角形,其与圆弧在D、E两点相切,并与圆O交于F、G两点,此为符合题意的最小磁场区域由数学知识可知∠FOG=600,所以粒子偏转的圆心角为3000,运动的时间      (3)连接并延长与交与H点,由图可知,, = 点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。

      另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角形磁场的切圆 四、磁场围为树叶形 例4 在平面有许多电子(质量为、电量为),从坐标O不断以相同速率沿不同方向射入第一象限,如图7所示现加一个垂直于平面向、磁感强度为的匀强磁场,要求这些电子穿过磁场后都能平行于轴向正方向运动,求符合该条件磁场的最小面积  解析:电子在磁场中运动半径是确定的,设磁场区域足够大,作出电子可能的运动轨道如图8所示,因为电子只能向第一象限平面发射,其中圆O1和圆O2为从圆点射出,经第一象限的所有圆中的最低和最高位置的两个圆圆O2在x轴上方的个圆弧odb就是磁场的上边界其它各圆轨迹的圆心所连成的线必为以点O为圆心,以R为半径的圆弧O1OmO2由于要求所有电子均平行于x轴向右飞出磁场,故由几何知识知电子的飞出点必为每条可能轨迹的最高点可证明,磁场下边界为一段圆弧,只需将这些圆心连线(图中虚线O1O2)向上平移一段长度为的距离即图9中的弧ocb就是这些圆的最高点的连线,即为磁场区域的下边界两边界之间图形的阴影区域面积即为所求磁场区域面积:            还可根据圆的知识求出磁场的下边界设某电子的速度V0与x轴夹角为θ,若离开磁场速度变为水平方向时,其射出点也就是轨迹与磁场边界的交点坐标为(x,y),从图10中看出,,即(x>0,y>0),这是个圆方程,圆心在(0,R)处,圆的圆弧部分即为磁场区域的下边界。

        点评:这道题与前三题的区别在于要求学生通过分析确定磁场的形状和围,磁场下边界的处理对学生的数理结合能力和分析能力要求较高   由以上题目分析可知,解决此类问题的关键是依据题意,分析物体的运动过程和运动形式,扣住运动过程中的临界点,应用几何知识,找出运动的轨迹圆心,画出粒子运动的部分轨迹,确定半径,再用题目中规定形状的最小磁场覆盖粒子运动的轨迹,然后应用数学工具和相应物理规律分析解出所求的最小面积即可9 / 9。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.