好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高分辨透射电子显微术.ppt

69页
  • 卖家[上传人]:鲁**
  • 文档编号:588245123
  • 上传时间:2024-09-07
  • 文档格式:PPT
  • 文档大小:2.04MB
  • / 69 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第十二章第十二章 高分辨透射电子显微术高分辨透射电子显微术 n1924年,de Broglie提出波粒二象性 假说n1926年 ,Busch发现了不均匀的磁场可以聚焦电子束 n1933年 ,柏林大学研制出第一台电镜(点分辨率达到50nm) n1939年,德国西门子公司生产出第一批商用透射电镜(点分辨率10nm) n1950年 ,开始生产高压电镜(点分辨率优于0.3nm,晶格条纹分辨率由于0.14nm) n1956年 ,门特(Menter)发明了多束电子成像方法,开创了高分辨电子显微术, 获得原子象 透射像(透射像(TEM)的种类和特点)的种类和特点n利用显微镜观察的目的————衬度的差异n质厚像(不同质量物质吸收电子能力不同形成衬度像)n衍衬像(满足布拉格衍射程度不同形成的衬度像)n高分辨显微像(HREM):属于相位衬度像相位衬度像n高分辨显微像实质:是透射束和衍射束干涉形成的衬度,反映了晶体的周期性排列n高分辨显微像分:晶格像(或条纹像)和结构像(或原子像)n高分辨显微像(HREM)/STEM的明场像(BF)和暗场像(DF)是干涉像 n n电镜自电镜自19321932年问世以来,经过半个世纪的发展,不但作为显年问世以来,经过半个世纪的发展,不但作为显微镜主要指标的分辨本领已由微镜主要指标的分辨本领已由10nm (193910nm (1939年第一台商用透射年第一台商用透射电镜电镜) )提高到提高到0.1-0.3nm0.1-0.3nm,可以直接分辨原子,并且还能进行,可以直接分辨原子,并且还能进行纳米尺度的晶体结构及化学组成的分析,成为全面评价固体纳米尺度的晶体结构及化学组成的分析,成为全面评价固体微观特征的综合性仪器。

      微观特征的综合性仪器n n在此期间,人们还致力于发展超高压电镜、扫描透射电镜、环境电镜以及电镜的部件和附件等,以扩大电子显微分析的应用范围和提高其综合分析能力 n n高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高分辨像这种高分辨像直接给出晶体结构在电子束方向上的分辨像这种高分辨像直接给出晶体结构在电子束方向上的投影,因此又称为结构像投影,因此又称为结构像( (图图4-86)4-86)n n加速电压为加速电压为100kV100kV或高于或高于100kV100kV的透射电镜的透射电镜( (或扫描透射电镜或扫描透射电镜) ),只要其分辨本领足够的高,在适当的条件下,就可以得到,只要其分辨本领足够的高,在适当的条件下,就可以得到结构像或单原子像结构像或单原子像n n从用从用100kV100kV、、500kV500kV和和1000kV1000kV电镜所观察到的原子排列很接近电镜所观察到的原子排列很接近理论预言的情况,也和理论预言的情况,也和X X射线、电子衍射分析结果相近射线、电子衍射分析结果相近 nYi图4.86 硅[110]晶向的结构像 n结构像的衬度—位相衬度 在SEM质厚衬度成像时,一般是用物镜光阑挡掉散射光束,使透射束产生衬度。

      n但在极薄(如60nm)样品条件下或观察单个原子时,它们不同部位的散射差别很小,或者说样品各点散射后的电子差不多都通过所设计的光阑,这时就看不到样品各部位电子透过的数目差别,即看不到质厚衬度n但在这时,散射后的电子其能量会有10-20eV的变化,这相当于光束波长的改变,从而产生位相差别 n如图4.87是一个行波图,本应为T波,现在变成了I波,两者之间的位相角差一个△φ,但两者的振幅应相当或近似相等,只是差一个散射波S,它和I波的位相差π/2,在无像差的理想透镜中,S波和I波在像平面上,可以无像差的再迭加成像,所得结果振幅和T一样,我们不会看到振幅的差别,如图4.88(a) 图图4.87 4.87 行波图行波图 n但如果使 S 波改变的位相,那么如图4.88(b)所示,就会看到振幅 I + S 与T 的不同,这种形成的衬度就叫做位相衬度在透射电镜中,球差和欠焦都可以使S波的位相改变,从而形成位相衬度 图图图图4.88 4.88 复振幅图复振幅图复振幅图复振幅图 n实际上,透射电镜的像衬度,一般来说是质厚衬度和位相衬度综合的结果n对于厚样品来说,质厚衬度是主要的;对于薄样品来说,位相衬度则占主导地位。

      n以位相衬度形成的单原子像或结构像的观测标志着电镜已得到了重大发展 n n电镜在材料科学中的应用可以说是经历了三个高潮:电镜在材料科学中的应用可以说是经历了三个高潮:1 1))50-6050-60年代的薄晶体中位错等晶体缺陷的衍衬像的观察;年代的薄晶体中位错等晶体缺陷的衍衬像的观察;2 2))7070年代极薄晶体的高分辨结构像及原子像的观察;年代极薄晶体的高分辨结构像及原子像的观察;3 3))8080年代兴起的分析电镜的对纳米区域的固体材料,用年代兴起的分析电镜的对纳米区域的固体材料,用X X射射线能谱或电子能量损失谱进行成分分析及用微束电子衍射进线能谱或电子能量损失谱进行成分分析及用微束电子衍射进行结构分析行结构分析 衍射衬度像(衍衬像)衍射衬度像(衍衬像)Diffracted ImagenYi 衍射衬度像(衍衬像)成像原理图衍射衬度像(衍衬像)成像原理图nYi 阿贝成像原理阿贝成像原理nyi频谱面  透镜像面    透镜成像有两个观点透镜成像有两个观点:几何光学:自物点A,B,C发出的球面波几何光学:自物点A,B,C发出的球面波,经透镜折经透镜折射后射后,各自会聚到它们的像点A各自会聚到它们的像点A ,BB ,CC .    n阿贝成像原理阿贝成像原理: 物是一系列不同空间频率的集合,入射光经物是一系列不同空间频率的集合,入射光经物平面发生夫琅和费衍射,在透镜焦面(频谱面)上形成一物平面发生夫琅和费衍射,在透镜焦面(频谱面)上形成一系列衍射光斑,各衍射光斑发出的球面次波在相面上相干叠系列衍射光斑,各衍射光斑发出的球面次波在相面上相干叠加,形成像。

      加,形成像由由阿阿贝贝的的观观点点来来看看,,许许多多成成像像光光学学仪仪器器就就是是一一个个低低通通滤滤波波器器,,物物平平面面包包含含从从低低频频到到高高频频的的信信息息,,透透镜镜口口径径限限制制了了高高频频信信息息通通过过,,只只许许一一定定的的低低频频通通过过,因因此此,丢丢失失了了高高频频信信息息的的光光束束再再合合成成,,图图象象的的细细节节变变模模糊糊孔孔径径越越大大,,丢丢失失的的信信息息越越少少,,图图象越清晰象越清晰阿贝成像原理将成像过程分为两步阿贝成像原理将成像过程分为两步:第一步第一步“分频分频”;;第二步第二步“合成合成”. 高分辨显微像成像原理图高分辨显微像成像原理图nYid高分辨显微像(HREM)的实质是透射束和衍射束干涉形成的衬度,反映了晶体的周期性排列透镜的作用...同一个波矢量同一个空间点 透射电镜的基本原理nyi 透镜的成像作用可以分为两个过程: 第一个过程是平行电子束遭到物的散射作用而分裂成为各级衍射谱,即由物变换到衍射的过程; 第二个过程是各级衍射谱经过干涉重新在像平面上会聚成诸像点,即由衍射重新变换到物(像是放大了的物)的过程 晶体对于电子束就是一个三围光栅。

      阿贝成像原理阿贝成像原理n成像系统光路图如图所示n当来自照明系统的平行电子束投射到晶体样品上后,除产生透射束外还会产生各级衍射束,经物镜聚焦后在物镜背焦面上产生各级衍射振幅的极大值n每一振幅极大值都可看作是次级相干波源,由它们发出的波在像平面上相干成像,这就是阿贝光栅成像原理 波的干涉波的干涉nYi底片 n高分辨透射电子显微术:是材料原子级别显微组织结构的相位衬度显微术它能使大多数晶体材料中的原子成串成像 n1971年饭岛(Iijima)首次用电子显微镜拍摄了Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于晶体结构中电子束入射方向的一个通道这是由于通道与周围相比对电子的散射较弱,因此在像中呈现为亮点在弱相位体近似成立的条件下,高分辨电子显微像就是晶体结构在电子束方向的投影,因此将晶体结构与电子显微像结合起来这种直观地显示晶体结构的高分辨像就称为结构像 nSomu Iijima(饭岛饭岛)于于1991年在电子显微镜下发现纳米碳管,年在电子显微镜下发现纳米碳管,Nature,,354 (1991) 56. nBi-系超导氧化物的堆积缺陷层调整Stacking faultLayer modulation n高分辨像除了直观外,它的主要特点是能给出晶体中小到零点几或几纳米的局部结构。

      换言之,可以观察单个晶胞内的原子排列,要比X射线结构分析的体积小十几个数量级更重要的是观察对象不一定是周期性结构,如单个空位、位错、层错等晶体缺陷以及晶界、畴界等界面都能清晰成像 n高分辨电子显微术从七十年代起逐渐发展成为一门成熟的科学,不但在结构简单的金属与合金、半导体、氧化物、陶瓷、复合材料、矿物等方面得到广泛的应用,并且也在结构比较复杂的有机化合物中获得了高质量、高分辨率的结构像,还在生物大分子如蛋白质、核酸与植物结构研究方面取得了重大进展,把晶体结构研究提高到一个新的水平 n由高分辨透射电镜电子枪发射的电子波穿过样品时与样品的原子发生相互作用,在样品下表面的出射电子波中携带着样品的结构信息,出射电子波作为次级子波源经过电子透镜后在其像平面处发生干涉高分辨像就是出射电子波在物镜像平面干涉的结果所以高分辨像的衬度是相干相位衬度 高分辨TEMn高分辨TEM是观察材料微观结构的方法不仅可以获得晶包排列的信息,还可以确定晶胞中原子的位置n200KV的TEM点分辨率为0.2nm,1000KV的TEM点分辨率为0.1nmn可以直接观察原子象 高分辨TEMn用物镜光阑选择透射波,观察到的象为明场象;n用物镜光阑选择一个衍射波,观察到的是暗场像;n在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨电子显微像 高分辨显微像n高分辨显微像的衬度是由合成的透射波与衍射波的相位差所形成的。

      n入射电子与原子发生碰撞作用后,会是入射电子波发生相位的变化n透射波和衍射波的作用所产生的衬度与晶体中原子的晶体势有对应关系n重原子具有较大的势,像强度弱 nyi 高分辨像n晶格条纹像n一维结构像n二维晶格像(单胞尺度的像)n二维结构像(原子尺度的像;晶体结构像)n特殊像 晶格条纹像n如果用物镜光阑选择后焦平面上的两个波来成像,由于两个波的干涉,得到一维方向上强度呈周期变化的条纹花样,就是晶格条纹像n不要求电子束准确平行与晶格平面n常用与微晶和析出物的观察,可以揭示微晶的存在以及形状,但不能获得结构信息但可通过衍射环的直径和晶格条纹间距来获得 nA: 非晶态合金nB:热处理后微晶的晶格条纹像nC:微晶的电子衍射n明亮部位为非晶n暗的部位为微晶 一维结构像n如果倾斜晶体,使电子束平行于某一晶面入射,就可以获得一维衍射条件的花样使用这种衍射花样,在最佳聚焦条件下拍摄的高分辨率电子显微像不同于晶格条纹像,含有晶体结构的信息即将观察像与模拟像对照,就可以获得像的衬度与原子排列的对应关系 nyi 二维晶格像n如果电子束平行于某晶带轴入射,就可以满足二维衍射条件的衍射花样在透射波附近出现反映晶体单胞的衍射波。

      在衍射波和透射波干涉生成的二维像中,能观察到显示单胞的二维晶格像n该像虽然含有单胞尺度的信息,但不含原子尺度的信息,称为晶格像 nyi n二维结构像n在分辨率允许的范围内,尽可能多用衍射波成像,就可以使获得的像中含有单胞内原子排列的信息n一般结构像只有在比较薄的区域才能观察到,但对于轻元素在较厚的区域也可以观察到结构像 nyiA: β 氮化硅的结构像B: α氮化硅的结构像C,e: β 氮化硅的模拟像和原子排列D,f :α氮化硅的结构像模拟像和原子排列 n高分辨电子显微图像可以分为三种类型:高分辨电子显微图像可以分为三种类型:n1 1)晶格像:)晶格像:它采用电子束从某一晶面产生反射成像它采用电子束从某一晶面产生反射成像 n这种图像可提供晶体结构周期的信息,并有严格的对应关系这种图像可提供晶体结构周期的信息,并有严格的对应关系n根据除透射束外根据除透射束外, ,选取参加成像的衍射束的多少,图像上表选取参加成像的衍射束的多少,图像上表现为一组或多组平行等距的条纹现为一组或多组平行等距的条纹n条纹的方向垂直于对应的成像衍射束倒易矢的方向,条纹间条纹的方向垂直于对应的成像衍射束倒易矢的方向,条纹间距等于该衍射束代表的晶面间距。

      距等于该衍射束代表的晶面间距nMenter最先得到的就是酞氰铂的一维晶格像晶体中存在最先得到的就是酞氰铂的一维晶格像晶体中存在的缺陷,使图像上的条纹衬度出现异常,例如中断、弯曲、的缺陷,使图像上的条纹衬度出现异常,例如中断、弯曲、甚至间距也发生改变条纹像衬对缺陷十分敏感甚至间距也发生改变条纹像衬对缺陷十分敏感n利用一维晶格像可以可以直接测得平面间距、观察脱溶、孪利用一维晶格像可以可以直接测得平面间距、观察脱溶、孪生、晶粒间界和长周期层状晶体结构生、晶粒间界和长周期层状晶体结构 n2 2)结构像:)结构像:n使电子束严格沿某一晶面族入射,形成一维结构像它含有使电子束严格沿某一晶面族入射,形成一维结构像它含有一维结构的信息一维结构的信息 n这类图像既可以反映晶格周期,也可反映晶体结构的更小的这类图像既可以反映晶格周期,也可反映晶体结构的更小的细节,例如原子或原子团的位置金属原子在像上表现为黑细节,例如原子或原子团的位置金属原子在像上表现为黑点,原子间的通道则呈亮色,上述点,原子间的通道则呈亮色,上述Iijiman20Iijiman20世纪世纪7070年代拍年代拍得的得的TiTi2 2BbBb1212O O2929的高分辨像,属于二维结构像。

      的高分辨像,属于二维结构像 n3 3)单个原子像:它可以反映出孤立存在的原子,早期柯柳)单个原子像:它可以反映出孤立存在的原子,早期柯柳((Crew A VCrew A V)曾获得过链状氧化铀分子在电子辐照下分解出)曾获得过链状氧化铀分子在电子辐照下分解出单个铀原子的图像,属于这类高分辨显微像单个铀原子的图像,属于这类高分辨显微像 n高分辨(HRTEM)技术n高分辨电子显微技术是从原子尺度来观察和研究材料的微结构要获得良好的高分辨电子显微像,必须要注意以下三个方面:合适样品;成像条件;实验操作n晶格条纹像:n用物镜光阑选择后焦面上的两束波成像,由于两束波的干涉,得到一维方向上强度呈周期变化的条纹花样这就是所谓的晶格条纹像 衍射衬度和相位衬度nYi 高分辨分析:晶格像和结构像高分辨分析:晶格像和结构像 n非晶的高分辨像非晶的高分辨像 微晶的晶格条纹微晶的晶格条纹 nSiC 的二维晶格像的二维晶格像 TEM的应用n纳米粉体的观察n薄膜形貌观察n缺陷结构研究 高分子纳米球的合成nyi SrAl2O4纳米材料的水解nyi纯水为溶剂,水解丝状物居多,晶体纯水为溶剂,水解丝状物居多,晶体 形貌的变化过程nyiFig.23 structure transition of sphere hydrolysate under electron beamA: 30sec; B: 2min; C: 5min; D: 10min; E:15min MoS2纳米棒nyi 层状结构nyi 催化剂的研究nyi 催化剂nyi 位错研究nyi 相界研究nyi取向关系为66o[0 1] 铜/氧化镁界面的位错分布 碳纳米管nyi 单壁纳米管nyi 单壁纳米管的截面图nyi nyiv 纳米线具有均匀的外形和束状规整排列v 纳米线的平均直径和长度分别为10nm和10μm,即长径比为1000v 电子衍射为规则清晰的点阵:纳米线为单晶结构v 只有Sr和Cu的信号v Cu的信号由铜网所至v C、O和H在该分析中无法检测v 结果说明纳米线是由锶的化合物组成Fig 1.A TEM micrograph along with electron diffraction of typical SrCO3 nanowires prepared by exposing to air for 30 min and re-crystallized in water bath at 60℃ for 12 hoursFig 1.B EDX analysis results of SrCO3 nanowires prepared by exposing to air for 30 min and re-crystallized in water bath at 60℃ for 12 hours nyiv 纳米线已经形成 v 在受到电子束照射时发生变形 v 电子衍射花样为规律性的斑点 Fig 2.A TEM for 10 minFig 2.B TEM for 30 minv 颗粒为长圆形:定向生长v 颗粒自组装形成的长串 :纳米线v 电子衍射花样为不清晰的亮环 :非晶Fig 2.C TEM for 60 minv 纳米线已经完全形成v 在电子束照射下较为稳定v 电子衍射花样:纳米线的取向取向一致v 晶体的C轴同纳米线的走向一致 纳米球的形貌和组成纳米球的形貌和组成nyi 纳米球的微观结构nyi 样品要求样品要求获得良好的高分辨电子显微像,试样必须符合要求。

      试样要求试样要求:1.  清洁、无污染、无氧化非晶的污染物和氧化物对电子的散射比晶态物质强得多(几倍~30倍),漫散射电子会成为像的背底,严重地损害高分辨像的像质;2. 有薄区,无严重的翘曲翘曲使成像条件改变,因而不可能得到面积较大、像质良好的高分辨像成像条件的微小改变会使像强度“畸变”(正确的成像条件可使原子位置精度达到0.01nm)拍摄结构像时,推荐把试样边缘拍摄进去,我们可以从边缘的像判断是否存在像散,是否处于谢尔策聚焦位置等 3. 不含有人为的信息特征最终减薄时,要消除切割或研磨时留下的机械应变层和热应变层;夹持试样时,必须小心,不要引入缺陷和变形等;4.  磁性样品,体积应尽可能地小将薄区剪下一小块固定在小孔铜环上,并使样品与铜环接触良好,同时,又不要让黏结剂污染观察区域这样可以减小样品磁场对像散等的影响 n保持良好的真空状态全年全天连续不停仪器,使仪器保持稳定高真空状态n电镜镜筒电源一直保持打开,以保证镜筒电流的稳定性n每天加到200 kV高压,以保证镜筒电流的稳定n大约每2个月左右烘烤镜筒和SIP一次,每次48小时。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.