
2023学年成都市重点中学九年级数学第一学期期末统考模拟试题含解析.doc
18页2023学年九年级上学期数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每小题3分,共30分)1.在△中,∠,如果,,那么cos的值为( )A. B.C. D.2.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( )A. B. C. D.3.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为( )A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4)C.(2,﹣1) D.(8,﹣4)4.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为( )A.4 B.2 C.﹣2 D.15.若,下列结论正确的是( )A. B. C. D.以上结论均不正确6.若点是反比例函数图象上一点,则下列说法正确的是( )A.图象位于二、四象限B.当时,随的增大而减小C.点在函数图象上D.当时,7.方程x2﹣3x=0的根是( )A.x=0 B.x=3 C., D.,8.如图,为⊙O的直径,弦于,则下面结论中不一定成立的是( )A. B.C. D.9.如图,是的直径,是的弦,已知,则的度数为( )A. B. C. D.10.已知:在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是( )A. B.C. D.二、填空题(每小题3分,共24分)11.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是______厘米.12.反比例函数的图象在每一象限,函数值都随增大而减小,那么的取值范围是__________.13.在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值=_____.14.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;15.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1 , 其中正确的是________.16.如图,某河堤的横截面是梯形,,迎水面长26,且斜坡的坡比(即)为12:5,则河堤的高为__________.17.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是_____.18.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.三、解答题(共66分)19.(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.20.(6分)如图,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.21.(6分)先化简,再求值:,其中x满足x2﹣4x+3=1.22.(8分)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′,若反比例函数的图像恰好经过A′B的中点D,求这个反比例函数的解析式.23.(8分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.24.(8分)如图,是由6个棱长相同的小正方形组合成的几何体.(1)请在下面方格纸中分别画出它的主视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么请在下面方格纸中画出添加小正方体后所得几何体可能的左视图(画出一种即可)25.(10分)如图,已知,相交于点为上一点,且.(1)求证:;(2)求证:.26.(10分)新罗区某校元旦文艺汇演,需要从3名女生和1名男生中随机选择主持人.(1)如果选择1名主持人,那么男生当选的概率是多少?(2)如果选择2名主持人,用画树状图(或列表)求出2名主持人恰好是1男1女的概率.参考答案一、选择题(每小题3分,共30分)1、A【分析】先利用勾股定理求出AB的长度,从而可求.【详解】∵∠,,∴ ∴ 故选A【点睛】本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.2、C【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【详解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.3、B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.4、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;又由于函数图象位于一、三象限,则k=4.故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.5、B【分析】利用互余两角的三角函数关系,得出.【详解】∵,∴,∴,故选:B.【点睛】本题考查了锐角三角函数的定义,掌握互为余角的正余弦关系:一个角的正弦值等于另一个锐角的余角的余弦值则这两个锐角互余.6、B【分析】先根据点A(3、4)是反比例函数y= 图象上一点求出k的值,求出函数的解析式,由此函数的特点对四个选项进行逐一分析.【详解】∵点A(3,4)是反比例函数y=图象上一点,∴k=xy=3×4=12,∴此反比例函数的解析式为y=,A、因为k=12>0,所以此函数的图象位于一、三象限,故本选项错误;B、因为k=12>0,所以在每一象限内y随x的增大而减小,故本选项正确;C、因为2×(-6)=-12≠12,所以点(2、-6)不在此函数的图象上,故本选项错误;D、当y≤4时,即y=≤4,解得x<0或x≥3,故本选项错误.故选:B.【点睛】此题考查反比例函数图象上点的坐标特点,根据题意求出反比例函数的解析式是解答此题的关键.7、D【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8、D【分析】根据垂径定理分析即可.【详解】根据垂径定理和等弧对等弦,得A. B. C正确,只有D错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键.9、C【分析】根据圆周角定理即可解决问题.【详解】∵,∴.故选:C.【点睛】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.10、C【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.【点睛】本题主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.二、填空题(每小题3分,共24分)11、【分析】先由勾股定理求出,再过点作于,由的比例线段求得结果即可.【详解】解:过点作于,如图所示:∵BC=6厘米,CD=16厘米,CD厘米,,由勾股定理得:,,,,,,即,.故答案为:.【点睛】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,正确把握相关性质是解题关键.12、m>-1【分析】根据比例系数大于零列式求解即可.【详解】由题意得m+1>0,∴m>-1.故答案为:m>-1.【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.13、【解析】作AD⊥BC于D点,根据等腰三角形的性质得到BD=BC=3,然后根据余弦的定义求解.【详解】解:如图,作AD⊥BC于D点,∵AB=AC=4,BC=6,∴BD=BC=3,在Rt△ABD中,cosB==.故答案为.。












