
2021-2022学年广西壮族自治区柳州市际友中学高一数学理月考试题含解析.docx
6页2021-2022学年广西壮族自治区柳州市际友中学高一数学理月考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等差数列满足,则有 ( ) A、 B、 C、 D、参考答案:C略2. 下列函数中,在其定义域上既是奇函数又是增函数的是()A. B. C. D. 参考答案:B3. 设点M是Z轴上一点,且点M到A(1,0,2)与点B(1,-3,1)的距离相等,则点M的坐标是: A.(-3,-3,0) B.(0,0,-3) C.(0,-3,-3) D.(0,0,3)参考答案:B4. 已知,,则等于( )A. B. C. D.参考答案:C.选C.5. 已知为等差数列,若,则的值为 ( ) A. B. C. D.参考答案:A6. 某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )A. 9 B. 18 C. 27 D. 36参考答案:B试题分析:根据条件中职工总数和青年职工人数,以及中年和老年职工的关系列出方程,解出老年职工的人数,根据青年职工在样本中的个数,算出每个个体被抽到的概率,用概率乘以老年职工的个数,得到结果.设老年职工有x人,中年职工人数是老年职工人数的2倍,则中年职工有2x,∵x+2x+160=430,∴x=90,即由比例可得该单位老年职工共有90人,∵在抽取的样本中有青年职工32人,∴每个个体被抽到的概率是用分层抽样的比例应抽取×90=18人.故选B.考点:分层抽样点评:本题是一个分层抽样问题,容易出错的是不理解分层抽样的含义或与其它混淆.抽样方法是数学中的一个小知识点,但一般不难,故也是一个重要的得分点,不容错过7. 下列函数,既是偶函数,又在区间(0,+∞)为单调递增函数的是( )A.y=x B.y=x2﹣2x C.y=cosx D.y=2|x|参考答案:D【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】运用奇偶性的定义和常见函数的奇偶性,结合函数的单调性,即可判断D正确,A,B,C均错【解答】解:选项A,y=x为奇函数,故A错误;选项B,y=x2﹣2x,非即非偶函数,故B错误;选项C,y=cosx为偶函数,但在区间(0,+∞)上没有单调性,故C错误;选项D,y=2|x|为偶函数,当x>0时,解析式可化为y=2x,显然满足在区间(0,+∞)上单调递增,故正确.故选:D.【点评】本题考查函数的奇偶性和单调性,属基础题.8. 下列函数图象中,函数,与函数的图象只能是( )参考答案:C略9. f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是( )A. B. C.[3,+∞) D.(0,3]参考答案:A【考点】函数的值域;集合的包含关系判断及应用. 【专题】计算题;压轴题.【分析】先求出两个函数在[﹣1,2]上的值域分别为A、B,再根据对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),集合B是集合A的子集,并列出不等式,解此不等式组即可求得实数a的取值范围,注意条件a>0.【解答】解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A【点评】此题是个中档题.考查函数的值域,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,10. 函数f(x)=2x﹣的零点所在的区间是( )A. B. C. D.参考答案:B【考点】函数零点的判定定理.【分析】令函数f(x)=0得到,转化为两个简单函数g(x)=2x,h(x)=,最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.【解答】解:令=0,可得,再令g(x)=2x,,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(,1),从而函数f(x)的零点在(,1),故选:B.二、 填空题:本大题共7小题,每小题4分,共28分11. 已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是 .参考答案:12. 若圆与恒过点的直线交于两点,则弦的中点的轨迹方程为 .参考答案: 13. 已知函数的图象的对称中心是(3,-1),则实数a=________;2参考答案:214. 函数在定义域(0,+∞)上单调递增,则不等式的解集是 ▲ .参考答案:略15. 已知:,若,则 ;若,则 参考答案: ,16. 若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是 .参考答案:(1,2]【考点】对数函数的单调性与特殊点.【分析】当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+logax≥4,即logax≥1,故有loga2≥1,由此求得a的范围,综合可得结论.【解答】解:由于函数f(x)=(a>0且a≠1)的值域是[4,+∞),故当x≤2时,满足f(x)=6﹣x≥4.当x>2时,由f(x)=3+logax≥4,∴logax≥1,∴loga2≥1,∴1<a≤2.综上可得,1<a≤2,故答案为:(1,2].【点评】本题主要考查分段函数的应用,对数函数的单调性和特殊点,属于基础题.17. 若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m= .参考答案:9【考点】圆与圆的位置关系及其判定.【分析】化两圆的一般式方程为标准方程,求出圆心和半径,由两圆心间的距离等于半径和列式求得m值.【解答】解:由C1:x2+y2=1,得圆心C1(0,0),半径为1,由圆C2:x2+y2﹣6x﹣8y+m=0,得(x﹣3)2+(y﹣4)2=25﹣m,∴圆心C2(3,4),半径为.∵圆C1与圆C2外切,∴5=+1,解得:m=9.故答案为:9.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. 已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.参考答案:【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用三角函数的诱导公式以及两角和差的余弦公式,结合三角函数的辅助角公式进行化简求解即可.(2)利用三角函数的单调性进行求解即可.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tanxcosx?(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣≤2x﹣≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数的增区间为[kπ﹣,kπ+],k∈Z,当k=0时,增区间为[﹣,],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,],由2kπ+≤2x﹣≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,即函数的减区间为[kπ+,kπ+],k∈Z,当k=﹣1时,减区间为[﹣,﹣],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣],即在区间[﹣,]上,函数的减区间为∈[﹣,﹣],增区间为[﹣,].19. 已知三角形的三个顶点,,.(1)求线段BC的中线所在直线方程;(2)求AB边上的高所在的直线方程.参考答案:(1)(2).【分析】(1)先求出BC中点的坐标,再求BC的中线所在直线的方程;(2)先求出AB的斜率,再求出边上的高所在的直线方程.【详解】(1)由题得BC的中点D的坐标为(2,-1),所以,所以线段的中线AD所在直线方程为即.(2)由题得,所以AB边上的高所在直线方程为,即.【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.20. .已知数列{an},{bn}满足=(1)若求数列{an}的通项公式;(2)若==对一切恒成立,求实数取值范围.参考答案:(1)=;(2).【分析】(1)由,结合可得数列为等差数列,进而可得所求;(2)由得,利用累加法并结合等比数列的前项和公式求出,化简得,再利用数列的单调性求出的最大值即可得出结论.【详解】(1)由,可得=.∴数列是首项为1,公差为4的等差数列,∴.(2)由及,得=,∴,∴,又满足上式,∴.∵对一切恒成立,即对一切恒成立,∴对一切恒成立.又数列为单调递减数列,∴,∴,∴实数取值范围为.【点睛】本题主要考查等差数列与等比数列的通项公式与前项和公式,考查了累加法与恒成立问题、逻辑推理能力与计算能力,解决数列中的恒成立问题时,也常利用分离参数的方法,转化为求最值的问题求解.21. 已知以点P为圆心的圆经过点和,线段AB的垂直平分线交圆P于点C和D,且.(1)求直线CD的方程;(2)求圆P的方程.参考答案:解:(1)直线的斜率,中点坐标为,直线的方程为,即;(2)设圆心,则由点在直线上得:①,又直径,所以,所以②由①②解得:或所以圆心或圆的方程为或. 22. 探究函数f(x)=x+,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:x…0.511.51.71.922.12.22.33457…y…8.554.174.054.00544.0054. 024.044.355.87.57…请观察表中y值随x值变化的特点,完成以下的问题.函数f(x)=x+(x>0)在区间(0,2)上递减;(1)函数f(x)=x+(x>0)在区间 上递增;当x= 时,= .(2)证明:函数f(x)=x+(x>0)在区间(0,2)上递减.(3)思考:函数f(x)=x+(x<0)有最值吗?如果有,那么它是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)参考答案:解:(1)(2, +∞);2 ;4…。












