fluent组件参数设定参考.docx
46页Fluent 组组件参数件参数设设定参考定参考第一部分第一部分 读读入文件入文件1.1 读入文件读入文件FLUENT 组件读取工况文件(.cas)和网格文件(.msh),并得到一些相关信息,之后运行 FLUENT 相应的程序,并运行 FLUENT 读取信息的脚本,点击打开加载网格信息显示在界面中以供用户调试1.2 求解器类型求解器类型二维三维指所导入的模型维数单精度与双精度:单精度与双精度指求解器在表示变量的时候采用单精度的 float 类型或者采用 double 类型在所有的操作系统上都可以进行单精度和双精度计算对于大多数情况来说,单精度计算已经足够,但在下面这些情况下需要使用双精度计算:(1)计算域非常狭长(比如细长的管道),用单精度表示节点坐标可能不够精确,这时需要采用双精度求解器2)如果计算域是许多由细长管道连接起来的容器,各个容器内的压强各不相同如果某个容器的压强特别高的话,那么在采用同一个参考压强时,用单精度表示其他容器内压强可能产生较大的误差,这时可以考虑使用双精度求解器3)在涉及到两个区域之间存在很大的热交换,或者网格的长细比很大时,用单精度可能无法正确传递边界信息,并导致计算无法收敛,或精度达不到要求,这时也可以考虑采用双精度求解器。
第二部分第二部分 网格操作网格操作2.1 网格刻度网格刻度网格刻度主要是可以改变原来网格创建的单位,在网格软件中,默认单位一般是毫米,而在 FLUENT 软件中,默认单位是米,所以需要修改在面板上选择网格文件创建的单位,fluent 组件将会再 fluent 里面将默认单位 m 改为网格文件创建的单位,一般改为 mm2.2 网格检查网格检查网格检查是检查网格的质量信息,要求网格不能有负体积,2.3 网格光顺网格光顺临近单元体积的快速变化会导致大的截断误差截断误差是指控制方程偏导数和离散估计之间的差值FLUENT 可以改变单元体积或者网格体积梯度来精化网格从而提高网格的光滑性拉普拉斯光滑适用于各种类型的网格,当使用拉普拉斯方法时,一个拉普拉斯光滑操作被应用于非结构网格以重新配置节点新节点的位置是它周围节点位置的平均松弛因子(介于 0 与 1 之间的一个数)乘上计算所得的节点位置的增量松弛因子取 0 时节点没移动,取 1时节点的移动等于节点位置的整个增量网格迭代次数缺省值为 4基于偏斜度的光滑仅适用于三角形或者四面体网格通过重新配置倾斜改善网格的歪斜在极端情况下,操作可能建立越过边界的网格线,从而建立负体积。
特别是用一个大的松弛因子执行多个光滑操作,这最有可能发生在急剧拐角或粗糙解决的突起拐角的地方设置最小歪斜度 fluent 将努力移动部节点以改进歪斜值大于这个值的单元的歪斜情况缺省对于 2D 情况该值为 0.4,3D 为 0.8,迭代次数缺省为 4网格交换面的交换可以改善三角形网格或者四面体网格的质量,三角形网格,Delaunay 圆周测试来判断是否一个面应当被交换,其中两个三角形单元共享这个面如果一个单元的外接圆不包含第二个单元中的未被共享的节点,那么这队共享一个面的单元满足圆周测试在圆周测试不满足的情况下,对角线或面被交换重复使用面交换技术将产生一个强迫的 Delaunay 网格如果一个网格是 Delaunay 网格,那么他是唯一的一个最大化网格中的最小角的分成三角形所以这个分成三角形趋向于等边三角形,为给定的节点分布提供了最好的等边网格四面体网格,面的交换包括:寻找三个单元共享一个边的结构和把他们两个单元共享一个面以降低歪斜和单元计数执行交换,直到 number swaped 为 0 为止第三部分第三部分 求解模型定求解模型定义义3.1 求解器定义求解器定义3.1.13.1.1 求解器类型求解器类型压力基求解器在压力基求解器中,控制方程是依次求解的:原理是首先由动量方程求速度场,继而由压力方程进行修正使得速度场满足连续性条件。
由于压力方程来源于连续性方程和动量方程,从而保证流场的模拟同时满足质量守恒和动量守恒压力基求解器是从原来的分离式求解器发展来的,按顺序仪次求解动量方程、压力修正方程、能量方程和组分方程及其他标量方程,如湍流方程等,和之前不同的是,压力基求解器还增加了耦合算法,可以自由在分离求解和耦合求解之间转换, 需要注意的是,在压力基求解器中提供的几个物理模型,在密度基求解器中是没有的这些物理模型包括:流体体积模型(VOF),多项混合模型,欧拉混合模型,PDF 燃烧模型,预混合燃烧模型,部分预混合燃烧模型,烟灰和 NOx 模型,Rosseland 辐射模型,熔化和凝固等相变模型,指定质量流量的周期流动模型,周期性热传导模型和壳传导模型等 与与密密度度基基求求解解器器的的区区别别::区别 1:压力基求解器主要用于低速流和不可压缩流动的求解,而密度基求解器则主要针对高速流和可压缩流动而设计,但是现在两种方法都已经拓展成为可以求解很大流动速度范围的求解方法两种求解方法的共同点是都使用有限容积的离散方法,但线性化和求解离散方程的方法不同 区别 2:密度基求解器从原来的耦合求解器发展来的,同时求解连续性方程、动量方程、能量方程和组分方程。
然后依次再求解标量方程(只有标量,没有矢量的方程)(注:密度基求解器不求解压力修正方程,因为其压力是由状态方程得出的)密度基求解器收敛速度快,需要内存和计算量比压力基求解器要大! 特特点点::适用于压力基但不适用于密度基的模型: (1) 空化模型 (2) VOF 模型 (3) Mixture 多相流模型(4) Eulerian 多相流模型 (5) 非预混燃烧模型 (6) 预混燃烧模型 (7) 部分预混燃烧模型 (8) 组合 PDF 传输模型密度基求解器(Coupled Sover)原理:直接求解瞬态 N-S 方程(此方程理论上是绝对稳定的),将稳态问题转化为时间推进的瞬态问题,由给定的初场时间推进到收敛的稳态解,即时间推进法由于控制方程是非线性的,且相互之间是耦合的,因此,在得到收敛解之前,要经过多轮迭代: 1)根据当前的解的结果,更新所有流动变量如果计算刚刚开始,则用初始值来更新2)同时求解连续方程、动量方程、能量方程及组分输运方程的耦合方程组(后两个方程视需要进行求解) 3)根据需要,逐一地求解湍流、辐射等标量方程注意在求解之前,方程中用到的有关变量要用到前面得到的结果更新 4)对于包含离散相的模拟,当内部存在相间耦合时,根据离散相的轨迹计算结果更新连续相的源项。
5)检查方程组是否收敛,若不收敛,回到第 1)步,重新计算 格式:格式:密度基求解器有两种格式:隐式和显式密度基显式与隐式求解器依次求解额外的标量方程(如湍流和辐射等) 两种格式求解器的主要不同点在于对于耦合方程的线性化上由于隐式格式具有很好的稳定性,因此使用隐式求解器能够比显式格式更快的获得收敛的稳定解然而,隐式格式要比显式格式消耗更多的内存隐式—使用高斯/赛德尔对称块方法解出变量;显式—使用龙格-库塔显式时间积分格式具体情况可以查看 Fluent 理论手册 特特点点::对于高速可压流动,由强体积力(如浮力或者旋转力)导致的强耦合流动,或者在非常精细的网格上求解的流动,需要考虑密度基求解器密度基求解器耦合了流动和能量方程,常常很快便可以收敛密度基求解器所需要的内存约是压力基求解器的 1.5 到 2 倍,选择时可以根据这一情况来权衡利弊在需要耦合隐式的时候,如果计算机内存不够,就可以采用压力基或密度基显式密度基显式虽然也耦合了流动和能量方程,但是它还是比密度基隐式需要的内存少,当然它的收敛性也相应差一些显式格式主要用于激波等波动解的捕捉问题3.1.23.1.2 梯度选项梯度选项格林高斯单元(green-gauss cell based)应该是说在计算离散的两个点的压力差时是以代表单元的中心点位代表计算的(默认方法); 解有伪扩散(求解域的拖尾现象)。
伪扩散是指在平流扩散方程数值解中因平流项有限差分的截断误差引起的虚假扩散这是解方程欧拉型模式所特有的其大小与所用的有限差分格式有关,有时甚至完全掩盖方程中其他扩散项的作用为克服伪扩散,须采取特殊的技术措施和各种不同的差分格式而四边形、六面体网格采用基于 cell 的方法而格林高斯节点(green-gauss node based)是在计算离散的两个点的压力差时是以单元边界的两个节点为标准计算的该方式更精确;最小化伪扩散;推荐用在三角网格上一般三角形、四面体网格采用基于 node;在压力变化不是太显著的地方,两种选择应该欻别非常小但是两种计算方法的时间应该是基于节点的用计算时间更长LEAST SQUARES CELL BASED 基于单元的最小二乘方法,属于无网格方法,是最近计算领域新兴的数值方法该方法采用固定重构核近似建立形函数,并利用最小二乘配点法对控制方程进行离散处理固定重构核近似与传统的重构核近似相比,其优点是对形函数求导方便,这有效改善了无网格方法计算过程复杂的弱点另外最小二乘配点法是将直接配点法语最小二乘技术相结合产生的一种新的配点方法它既有较好的计算精度和计算复杂性3.1.33.1.3 时间属性时间属性所谓的定常(steady)和非定常(unsteady)就表述了流动状态是否随时间变化的含义,若流体中任何一点的压力,速度和密度等物理量都不随时间变化,则为定常流动;反之只要压力,速度和密度中任一物理量岁时间变化则为非定常流动。
这在计算过程中就是体现在方程不同,非稳态流多了时间变量,那么非稳态流就要进行时间离散其次,两种求解的结果对比而言:一种情况是你要求解的物理问题是稳态(steady)的,从理论上来说那么两种求解方式收敛之后的结果都是一样或者近似的只不过需要注意的是,在非稳态的求解中 dt 的选取会影响你的计算结果,有可能会计算发散,而且还必须要足够的计算步达到收敛才能和稳态的结果进行比较换句话说,如果你用非稳态的方法去求解稳态流,如果计算本身就没收敛,就取结果进行比较,那么肯定是不行的一般而言,在进行非定常(unsteady)求解的时候,前面一段时间的计算结果基本上是不予采用的,因为有一个数值收敛的过程另一种是你要求解的物理问题是非定常(unsteady)的,那么你用定常(steady)的求解方法得出的结果就是一堆垃圾了,没有任何价值选择 steady 就是稳态计算,稳态是关心最后的结果,非稳态是关心整个过程非稳态一阶与非稳态二阶是指控制方程对时间进行一阶求导还是二阶求导显然二阶求导需要消耗跟多的内存和较多的计算时间Non Iterative Time Advancement 是非迭代时间进程Frozen Flux Formulation 是冷冻配方的意思对基于压力的解算器 Δt 必须足够小用来解决依赖于时间的特征;保证每个时间步的最大迭代步数中能够达到收敛;合适的时间步长可以有以下估计得出:时间步长估算也能够被选择为了能够解算得出非定常流动的特征(比如流动在一个已知的波动周期内)3.1.43.1.4 速度属性速度属性在使用 Pressure-based 的求解器时,Fluent 允许用户定义的速度形式有绝对的和相对的,使用相对的速度形式是为了在 Fluent 中使用运动参考系以及滑移网格方便定义速度,关于这两个速度的理解很简单,如果速度入口处的单元在计算的过程中有运动发生的情况(如果你使用了运动参考系或者滑移网格),你可以选择使用指定相对于邻近单元区域的速度或在参考坐标系中的绝对速度来定于入口处的速度;如果速度入口处的相邻单元在计算过程中没有发生运动,那么这两种方法所定义的速度是等价的;如果使用 Density-based 的求解器,这个求解器的算法只允许统一使用绝对的速度形式。
所以,绝对速度属性选项的效率较高,适合大多数情况相对速度属性选项被主要用于,主流区域随着转子旋转的旋转体系的流动3.1.53.1.5 空间属性空间属性。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


