
AV全程-自动驾驶19-课件13.ppt
103页自动飞行控制系统自动飞行控制系统第一节 空气动力学空气动力学 第二节第二节 飞行力学飞行力学 第三节第三节 自动驾驶仪的基本工作原理自动驾驶仪的基本工作原理第四节第四节 飞行控制计算机及系统飞行控制计算机及系统第五节第五节 飞行指引仪飞行指引仪第六节第六节 舵机、舵回路及液压系统舵机、舵回路及液压系统第八街第八街 偏航阻尼器偏航阻尼器第九节第九节 电传操纵系统电传操纵系统自动飞行控制系统概述自动飞行控制系统概述 自动飞行控制系统(AFCS)完成以下主要功能:自动驾驶仪(A/P);飞行指引仪(F/D);安定面配平系统(STAB/T);偏航阻尼器(Y/D);自动油门系统(A/T)第一节 空气动力学空气动力学坐标系坐标系飞机飞机的角运动参数运动参数飞机的操纵机构阻力阻力坐标系坐标系地面坐标系原点:O取地面上某一点(例如飞机起飞点)OX轴:处于地平面内并指向某方向(如指向飞行航线);OY轴:也在地平面内,且垂直于OX轴指向右方;OZ轴:垂直地面指向地心坐标系坐标系(续)(续)机体坐标系原点:O取在飞机质心处,坐标与飞机固连OX轴:与飞机机身的轴线平行,且处在飞机对称平面内指向机头;OY轴:垂直于飞机对称平面指向右机翼;OZ轴:在飞机对称平面内,且垂直于OX轴指向下方。
坐标系坐标系(续)(续)速度坐标系,也称气流坐标系(速度轴系)原点:O取在飞机质心处OX轴:与飞行速度的方向一致;OY轴:垂直于XOZ平面,指向右方;OZ轴:在飞机对称平面内,垂直于OX轴指向下方飞机的角运动参数飞机的姿态角飞机的轨迹角气流角飞机的姿态角(机体轴系与地理系的关系)俯仰角:机体纵轴与其在地平面投影线之间的夹角以抬头为正;偏航角:机体纵轴在地平面上的投影与地理北之间的夹角以机头右偏航为正(机头方向偏在预选航向的右边)滚转角:又称倾斜角,指机体竖轴(飞机对称面)与通过机体轴的铅垂面间的夹角飞机右倾斜时为正飞机的轨迹角(地速坐标系与地理坐标系之间的关系)航迹倾斜角:飞行地速矢量与地平面间的夹角,以飞机向上飞时为正;航迹偏转(方位)角s:飞行地速矢量在地平面上的投影与地理北向之间的夹角,以速度在地面上投影偏在地轴之右时为正;航迹滚转角s:飞行地速矢量的垂直分量与飞行地速矢量及其在水平面上的投影组成的平面之间的夹角,以垂直分量在该平面之右为正气流角(空速坐标与机体轴系的关系)迎角:空速向量在飞机对称面上的投影与机体轴的夹角,以速度向量的投影在机体轴之下为正(飞机的上仰角大于轨迹角为正);侧滑角:速度向量与飞机对称面的夹角。
以速度向量处于飞机对称面右边时为正飞机的操纵机构 飞机的运动通常利用升降舵、方向舵、副翼及油门杆来控制升降舵e,规定:升降舵后缘下偏为正正的e产生负的俯仰力矩M,即低头力矩;升降舵调整片:减小升降舵上的铰链力矩飞机的操纵机构(续)副翼偏转角a,规定:右副翼后缘下偏(左副翼随同上偏)为正a产生负的滚转力矩L方向舵偏转角r,规定:方向舵后缘向左偏转为正r产生负的偏航力矩N阻力分为:零升阻力和生致阻力零升阻力:与升力无关,又可细分为:摩擦阻力;压差阻力;零升波阻升致阻力:与升力有关,又可细分为:诱导阻力;升致波阻第二节 飞行力学飞机飞行中的受力与力矩飞机转弯时的受力状态及影响因素失速的基本概念及飞行包线限制影响飞机纵向、侧向和垂直方向稳定的条件与受力因素高速飞行与马赫数的概念飞机飞行中的气动力与力矩升力纵向力矩侧力滚转力矩L与偏航力矩N连续方程及伯努里方程连续方程 FxV=常数 高速流:(M-1)dV/V=dF/F 伯努里方程P+pV=常数升力 在亚音速流中,气流流过有迎角的翼型(a)时,在下表面临近前缘点A,流线在此点分开,在该点上的流速必须为零,A点称为驻点;驻点以上气流绕翼型上表面流过,驻点以下气流绕下表面流过,然后到后缘点B处汇合成一条流线。
B点也是驻点,其流速也为零升力(续)将翼面上各点压力系数值作为(b)的图形箭头所指为翼面法向压力系数值为负表示吸力,则箭头向外;压力系数值为正表示压力,则箭头指向翼面各向量外端光滑连成曲线,得到压力分布图升力(续)升力产生原理:气流流过有迎角的翼型时,根据流量方程可知,下表面的气流速度小于上表面的气流速度,根据伯努力方程可知:下表面对机翼的压力大于上表面的压力,上下压力差产生空气动力,它在垂直于空速方向上的分量形成升力压力分布图明确表示出上下翼面的压力差将压力分布投影到 V 的垂直方向上并沿全翼面积分可得到升力系数CLw升力系数CLw随迎角的变化关系如下图所示理论研究和实验表明:机翼的升力LW 与机翼面积SW成正比,与动压Q=(1/2)V 2成正比LW=CLwQSW 升力系数CLw是无因次的升力系数CLw是迎角的函数,越大CLw也越大当=0时CLw0这是因为适用于低速飞行的翼型曲度总是正曲度,当=0时上下翼面压力差仍不为零而是正值,当为某一负值时才有CLw=0使CLw=0的迎角称为零升迎角0,一般为负值当迎角达到一定值时,CLw达到最大值CLwMAX,如果迎角再大则CLw下降,使CLw=CLwMAX 的迎角称为临界迎角crCLw与在一定范围内呈线性关系。
性范围内,CLw与的关系为:CLw=C(-0)(注意0为负值)纵向力矩(俯仰力矩)纵向力矩(俯仰力矩)纵向力矩纵向力矩是指作用于飞机的外力是指作用于飞机的外力产生的绕机体横轴(产生的绕机体横轴(0Y0Y)的力矩气动力矩和发动机推力向量因不气动力矩和发动机推力向量因不通过飞机质心而产生的力矩,亦称通过飞机质心而产生的力矩,亦称俯仰力矩俯仰力矩发动机推力对质心的力矩 上图表示推力向量不通过质心时的情况,发动机推力对质心的力矩为:MT=TZTT表示推力推力向量在质心之下时,定义ZT为正值,则MT为正值,表示力矩矢量与OY轴一致空气动力引起的俯仰力矩 空气动力引起的俯仰力矩取决于飞行的速度、高度、迎角及升降舵偏角此外,当飞机的俯仰速率 qddt,迎角变化率,以及升降舵偏转速率等不为零时,还会产生附加俯仰力矩,称为动态气动力矩气动俯仰力矩可写为:M=f(V,H,e,q,)也可用力矩系数表示:M=(1/2)CMV2SWCA空气动力引起的俯仰力矩定常直线飞行的俯仰力矩飞机纵向的平衡与操纵飞机饶OY轴转动产生的俯仰力矩下洗时差阻尼力矩升降舵偏转速率所产生的力矩定常直线飞行的俯仰力矩机翼产生的俯仰力矩机身产生的俯仰力矩水平尾翼的俯仰力矩全机纵向力矩机翼产生的俯仰力矩 作用于翼型表面的压力总和起来除得到升力和阻力外,还应该有一个力矩,力矩的大小与归算点有关。
上图示出二维翼风洞实验结果,其归算点取前缘点如果归算点不同,则力矩曲线也不同,但升力曲线不变机翼产生的俯仰力矩(续)利用C L曲线和Cm曲线都有线性段的特点,可找出另一归算点(取矩点)当变化时,该点只有C L变而力矩大小不变,这一点称为焦点,它到翼型前缘点的距离记为XF当100时,不论迎角为何值,对F点的力矩系数都是Cm由于对焦点的力矩是常值,当迎角增加时,其增量升力就作用在焦点上,故焦点又可解释成增量升力的作用点机身产生的俯仰力矩亚音速飞机的机身在0时没有升力,只有一个使C增大的纯力偶,因此机身本身的气动力矩特性是不稳定的超音速飞机机身的头部是锥形体,0时有升力由于头部总是在全机重心之前,故亦是不稳定作用水平尾翼的俯仰力矩如上图所示:平尾对重心的俯仰力矩为:Mt=-Ltlt 式中:Lt平尾升力;lt平尾焦点至飞机质心距离,也称平尾力臂水平尾翼的俯仰力矩(续)当正向增加时,平尾对飞机重心的负力矩也增大,是稳定作用因此平尾对全机的作用是使焦点后移水平尾翼产生的俯仰力矩还与升降舵偏角有关,它是俯仰操纵力矩操纵面偏转,使其上的气动力改变,不平衡力对飞机中心形成力矩,从而改变飞行姿态飞机纵向的平衡与操纵 以迎角为横坐标,e为参变量,将力矩系数Cm画成一族曲线(下图所示),可说明飞机纵向平衡与操纵的关系。
飞机纵向的平衡与操纵(续)飞机作等速直线平飞,应满足L=G(升力=重力)、T=D(推力=阻力)、对飞机重心的力矩M=0因此,必须选择一个迎角,使之具有一定数值的CL,以使L=G为使M=0(即Cm=0),必须偏转相应的升降舵偏角满足力和力矩的平衡条件之后,剩下的问题就是能否维持这种平衡飞机纵向的平衡与操纵(续)设飞机在=-50的Cm曲线上的=1处平衡,如果因风的扰动使1,负的Cma将产生低头力矩,使能恢复到1反之,在1时有正的抬头力矩使继续增大,当1时有负的低头力矩使继续减小这种维持不住的平衡,称为静不稳定平衡飞机纵向的平衡与操纵(续)Cma为负时能使飞机的平衡具有稳定的性质,称为静稳定平衡Cma的符号决定飞机平衡是否稳定,故称Cma为静稳定性导数Cma的正负号只能决定偏离平衡迎角后产生俯仰力矩的方向(趋势),而飞机受扰后能否最终回到平衡迎角以及恢复到平衡迎角的过渡过程如何等问题还与飞机的其他参数有关,因而给Cma的名称加一个“静”字以示其意飞机纵向的平衡与操纵(续)总之,要使飞机具有纵向静稳定性,Cma应为负值,即飞机重心位置必须在全机焦点之前因为如果飞机具有这样的结构,当飞机受到外界纵向干扰力矩时,它就会产生一个使飞机恢复原飞行状态的俯仰力矩,从而使飞机具有纵向静稳定性。
即:具有静稳定性的飞机,当受到外界干扰使飞机抬头(低头)后,飞机会受到负(正)向俯仰力矩,使飞机低(抬)头飞机饶OY轴转动产生的俯仰力矩 当飞机绕OY轴的俯仰角速度q0时,机翼和平尾都会产生俯仰力矩,其中以平尾的作用最为显著设具有抬头的俯仰角速度,则平尾有向下的运动速度,使得平尾有一个局部的迎角增量t,平尾上因此产生了一个升力增量LtLt 对飞机重心取矩Mt=-LtLt 此项力矩由飞机转动引起,其作用方向总是阻止飞机运动,故称为阻尼力矩三、侧力 飞机总气动力沿机体轴系OY轴的分量称为侧力Y侧力可以用侧力系数CY表示Y=(1/2)CYV2SW 飞机外形是对称的,只有在不对称的气流作用下才会有侧力飞机在0时会产生侧力Y,超音速飞机的侧力主要是垂直尾翼侧力Yv()和机头侧力Yh()之和产生-Y()侧滑角引起的侧力偏转方向舵r引起的侧力 偏转方向舵产生侧力与偏转升降舵的气动原理相同规定:+r产生+Y(r)滚转角速度p引起的侧力 当飞机绕机体轴ox轴的滚转角速度p0,在立尾上有附加侧向速度,即立尾有局部侧滑角,因而产生侧力偏航角速度r引起的侧力 飞机绕机体Oz轴的偏航角速度r0时,在立尾上有局部侧滑角,因而产生侧力 滚转角速度P和偏航角速度r引起的侧力滚转力矩L与偏航力矩N 绕机体轴OX轴的力矩称为滚转力矩L,绕机体轴OZ轴的力矩称为偏航力矩N,这两种力矩统称为侧向力矩。
一)绕OX轴的滚转力矩(二)绕OZ轴的偏航力矩*:前面已用L表示升力,此处的L表示滚转力矩一)绕OX轴的滚转力矩侧滑角引起的L-滚转静稳定力矩副翼偏转角a引起的L-滚转控制力矩方向舵偏转角r引起的L-控制交叉力矩滚转角速度p引起的L-滚转阻尼力矩偏航角速度r引起的L-交叉动态力矩侧滑角引起的L-滚转静稳定力矩此力矩主要由机翼和立尾产生,表示为:L=(1/2)ClV2SWb+:机翼上(下)反角的作用,产生-L(+L);+:机翼后掠角A1/4的作用,产生-L;+:立尾的作用,产生-L绕OX轴的滚转力矩(续)副翼偏转角a引起的L-滚转控制力矩 副翼正偏转时(右副翼后缘下偏,左副翼后缘上偏),右翼升力增大,左翼升力减小,产生的滚转力矩L为负值,故Cla为负方向舵偏转角r引起的L-操纵交叉力矩 方向舵正偏转时(方向舵后缘向左偏转)时,产生正的侧力由于方向舵在机身之上,此侧力对OX轴取矩得正的滚转力矩滚转角速度P引起的L-滚转阻尼力矩 滚转阻尼力矩主要由机翼产生,平尾和立尾对此也有影响当飞机右滚时p为正,右翼下行,左翼上行下行翼迎角增加故升力增加,上行翼迎角减小故升力减小,形成左(负)滚转力矩L,起到了阻止滚转的作用。












