
2024届浙江省“七彩阳光”新高三下期第一次月考数学试题试卷.doc
18页2024届浙江省“七彩阳光”新高三下期第一次月考数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为( )A. B. C. D.2.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为( )A. B.C. D.3.设函数,则使得成立的的取值范围是( ).A. B.C. D.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.965.若复数满足,则(其中为虚数单位)的最大值为( )A.1 B.2 C.3 D.46.已知集合,则=( )A. B. C. D.7.已知,,则( )A. B. C.3 D.48.已知函数满足:当时,,且对任意,都有,则( )A.0 B.1 C.-1 D.9.已知i是虚数单位,则( )A. B. C. D.10.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.11.已知函数是定义在上的奇函数,函数满足,且时,,则( )A.2 B. C.1 D.12.函数且的图象是( )A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.已知非零向量,满足,且,则与的夹角为____________.14.若变量,满足约束条件,则的最大值为__________.15.正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是______.16.数据的标准差为_____.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.18.(12分)已知函数f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)当x>0时,若函数g(x)(a>0)的最小值恒大于f(x),求实数a的取值范围.19.(12分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.20.(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程:(1)求曲线的极坐标方程;(2)若直线与曲线交于、两点,求的最大值.21.(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.22.(10分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.D【解题分析】先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【题目详解】, 将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为, 再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【题目点拨】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.2.A【解题分析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【题目详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【题目点拨】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.3.B【解题分析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【题目详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【题目点拨】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.4.D【解题分析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.5.B【解题分析】根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【题目详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【题目点拨】本题考查了复数模的定义及其几何意义应用,属于基础题.6.D【解题分析】先求出集合A,B,再求集合B的补集,然后求【题目详解】,所以 .故选:D【题目点拨】此题考查的是集合的并集、补集运算,属于基础题.7.A【解题分析】根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【题目详解】因为,所以,解得则.故选:A.【题目点拨】本题考查相等复数的特征和复数的模,属于基础题.8.C【解题分析】由题意可知,代入函数表达式即可得解.【题目详解】由可知函数是周期为4的函数,.故选:C.【题目点拨】本题考查了分段函数和函数周期的应用,属于基础题.9.D【解题分析】利用复数的运算法则即可化简得出结果【题目详解】故选【题目点拨】本题考查了复数代数形式的乘除运算,属于基础题。
10.D【解题分析】画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【题目详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【题目点拨】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.11.D【解题分析】说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【题目详解】由知函数的周期为4,又是奇函数,,又,∴,∴.故选:D.【题目点拨】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础.12.B【解题分析】先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【题目详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【题目点拨】本题考查了函数图象的判断,考查了函数的性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分13.(或写成)【解题分析】设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【题目详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【题目点拨】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.14.【解题分析】根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【题目详解】由约束条件可得可行域如下图阴影部分所示: 将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【题目点拨】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.15.【解题分析】设正四面体的棱长为,求出底面外接圆的半径与高,代入体积公式求解.【题目详解】解:设正四面体的棱长为,则底面积为,底面外接圆的半径为,高为.∴正四面体的体积,圆柱的体积.则.故答案为:.【题目点拨】本题主要考查多面体与旋转体体积的求法,考查计算能力,属于中档题.16.【解题分析】先计算平均数再求解方差与标准差即可.【题目详解】解:样本的平均数, 这组数据的方差是 标准差,故答案为:【题目点拨】本题主要考查了标准差的计算,属于基础题.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17.(1)证明见解析;(2).【解题分析】(1)取中点,连接,根据等腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【题目详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,,由勾股定理易知故四面体的体积【题目点拨】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.18.(Ⅰ);(Ⅱ)解题分析】(Ⅰ)分类讨论,去掉绝对值,求得原绝对值不等式的解集;(Ⅱ)由条件利用基本不等式求得,,再由,求得的范围.【题目详解】(Ⅰ)当时,原不等式可化为,此时不成立;当时,原不等式可化为,解得,即;当时,原不等式可化为,解得.综上,原不等式的解集是. (Ⅱ)因为,当且仅当时等号成立,所以.当时,,所以.所以,解得,故实数的取值范围为.【题目点拨】本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,。
